
EPICS
Input / Output Controller (IOC)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
October 2001
EPICS Release 3.14.0beta1
EPICS Release: R3.13.0.beta1 EPICS IOC Application Developer’s Guide 1

2 EPICS IOC Application Developer’s Guide

Table of Contents
 Table of Contents . 1

Chapter 1: Introduction . 7
1.1. Overview . 7
1.2. Acknowledgments . 9

Chapter 2: New Features for 3.14 . 11
2.1. Introduction . 11
2.2. Example Application . 11
2.3. Shell for non vxWorks environment . 14
2.4. Some Unresolved Items . 15

Chapter 3: EPICS Overview . 17
3.1. What is EPICS? . 17
3.2. Basic Attributes . 17
3.3. Hardware - Software Platforms (Vendor Supplied). 18
3.4. IOC Software Components . 19
3.5. Channel Access . 21
3.6. OPI Tools . 22
3.7. EPICS Core Software. 23

Chapter 4: EPICS Build Facility . 25
4.1. Overview . 25
4.2. Makefiles . 29
4.3. Make. 30
4.4. Makefile definitions . 31
4.5. Table of Makefile definitions. 43
4.6. Configuration Files . 50

Chapter 5: Database Locking, Scanning, And Processing 53
5.1. Overview . 53
5.2. Record Links . 53
5.3. Database Links . 54
5.4. Database Locking. 54
5.5. Database Scanning . 55
5.6. Record Processing . 56
5.7. Guidelines for Creating Database Links . 56
5.8. Guidelines for Synchronous Records. 58
5.9. Guidelines for Asynchronous Records . 59
5.10.Cached Puts . 61
5.11.Channel Access Links . 61

Chapter 6: Database Definition . 63
EPICS Release: R3.14.0alpha1 EPICS IOC Application Developer’s Guide 1

 Table of Contents
6.1. Overview . 63
6.2. Brief Summary of Database Definition Syntax. 63
6.3. General Rules for Database Definition . 64
6.4. Menu . 66
6.5. Record Type . 67
6.6. Device . 72
6.7. Driver . 73
6.8. Breakpoint Table . 73
6.9. Record Instance . 74
6.10.Record Attribute . 77
6.11.Breakpoint Tables - Discussion . 77
6.12.Menu and Record Type Include File Generation. . 78
6.13.dbExpand . 81
6.14.dbLoadDatabase . 82
6.15.dbLoadRecords. 82
6.16.dbLoadTemplate. 83
6.17.dbReadTest . 84

Chapter 7: IOC Initialization . 85
7.1. Overview - Environments requiring a main program . 85
7.2. Overview - vxWorks . 85
7.3. Overview - RTEMS . 86
7.4. iocInit . 86
7.5. Changing iocCore fixed limits . 88
7.6. TSconfigure . 88
7.7. initHooks . 89
7.8. Environment Variables . 90
7.9. Initialize Logging . 90

Chapter 8: Access Security . 91
8.1. Overview . 91
8.2. Quick Start. 91
8.3. User’s Guide . 92
8.4. Design Summary . 97
8.5. Access Security Application Programmer’s Interface . 99
8.6. Database Access Security . 103
8.7. Channel Access Security . 105
8.8. Trapping Channel Access Writes . 106
8.9. Access Control: Implementation Overview . 107
8.10.Structures . 109

Chapter 9: IOC Test Facilities. 111
9.1. Overview . 111
9.2. Database List, Get, Put . 111
9.3. Breakpoints . 113
9.4. Error Logging . 115
9.5. Hardware Reports . 115
9.6. Scan Reports . 116
9.7. Time Server Report . 116
9.8. Access Security Commands . 117
9.9. Channel Access Reports . 118
9.10.Interrupt Vectors. 119
9.11.EPICS . 119
2 EPICS IOC Application Developer’s Guide

 Table of Contents
9.12.Database System Test Routines . 120
9.13.Record Link Reports . 121
9.14.Old Database Access Testing . 122
9.15.Routines to dump database information . 122

Chapter 10: IOC Error Logging . 125
10.1.Overview . 125
10.2.Error Message Routines . 125
10.3.errlog Task. 127
10.4.Status Codes . 128
10.5.iocLog . 129

Chapter 11: Record Support . 131
11.1.Overview . 131
11.2.Overview of Record Processing . 132
11.3.Record Support and Device Support Entry Tables . 133
11.4.Example Record Support Module . 134
11.5.Record Support Routines . 140
11.6.Global Record Support Routines. 143

Chapter 12: Device Support. 147
12.1.Overview . 147
12.2.Example Synchronous Device Support Module . 147
12.3.Example Asynchronous Device Support Module . 149
12.4.Device Support Routines. 151

Chapter 13: Driver Support. 153
13.1.Overview . 153
13.2.Device Drivers. 153

Chapter 14: Static Database Access . 157
14.1.Overview . 157
14.2.Definitions. 157
14.3.Allocating and Freeing DBBASE . 158
14.4.DBENTRY Routines. 159
14.5.Read and Write Database . 160
14.6.Manipulating Record Types . 161
14.7.Manipulating Field Descriptions . 162
14.8.Manipulating Record Attributes . 163
14.9.Manipulating Record Instances . 163
14.10.Manipulating Menu Fields . 165
14.11.Manipulating Link Fields . 166
14.12.Manipulating MenuForm Fields . 167
14.13.Find Breakpoint Table. 169
14.14.Dump Routines . 169
14.15.Examples . 169

Chapter 15: Runtime Database Access . 173
15.1.Overview . 173
15.2.Database Include Files . 173
15.3.Runtime Database Access Overview . 175
15.4.Database Access Routines. 178
15.5.Runtime Link Modification. 186
15.6.Channel Access Monitors . 187
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 3

 Table of Contents
15.7.Lock Set Routines. 187
15.8.Channel Access Database Links. 189

Chapter 16: Device Support Library . 193
16.1.Overview . 193
16.2.Registering VME Addresses . 193
16.3.Interrupt Connect Routines. 194
16.4.Macros and Routines for Normalized Analog Values . 195

Chapter 17: EPICS General Purpose Tasks . 197
17.1.Overview . 197
17.2.General Purpose Callback Tasks . 197
17.3.Task Watchdog. 200

Chapter 18: Database Scanning . 203
18.1.Overview . 203
18.2.Scan Related Database Fields. 203
18.3. Scan Related Software Components . 204
18.4.Implementation Overview . 207

Chapter 19: IOC Shell . 213
19.1.Introduction . 213
19.2.IOC Shell Operation . 213
19.3.IOC Shell Programming . 215

Chapter 20: libCom . 219
20.1.bucketLib . 219
20.2.calc . 219
20.3.cppStd . 219
20.4.cvtFast. 222
20.5.cxxTemplates . 223
20.6.dbmf . 223
20.7.ellLib. 224
20.8.epicsRingBytes . 225
20.9.epicsRingPointer. 225
20.10.epicsTimer . 227
20.11. fdmgr . 232
20.12.freeList . 232
20.13.gpHash . 232
20.14.logClient . 233
20.15.macLib . 233
20.16.misc. 234

Chapter 21: libCom OSI libraries . 237
21.1.Overview . 237
21.2.epicsAssert . 238
21.3.epicsEvent. 238
21.4.epicsFindSymbol . 240
21.5.epicsInterrupt . 240
21.6.epicsMutex . 241
21.7.epicsThread. 244
21.8.epicsTime . 249
21.9.osiPoolStatus . 256
21.10.osiProcess . 257
4 EPICS IOC Application Developer’s Guide

 Table of Contents
21.11.osiSigPipeIgnore . 257
21.12.osiSock.h . 257

Chapter 22: Registry. 259
22.1.Registry.h . 259
22.2.registryRecordType.h . 259
22.3.registryDeviceSupport.h . 260
22.4.registryDriverSupport.h. 260
22.5.registryFunction.h . 260
22.6.registerRecordDeviceDriver.c. 260
22.7.registerRecordDeviceDriver.pl . 260

Chapter 23: Database Structures . 261
23.1.Overview . 261
23.2.Include Files . 261
23.3.Structures. 263
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 5

 Table of Contents
6 EPICS IOC Application Developer’s Guide

Chapter 1: Introduction

1.1 Overview
This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components
of EPICS. It is intended for anyone developing EPICS IOC databases and/or new record/device/driver support.

The plan of the book is:

New Features for release 3.14

A brief description of new features. The most important new feature is that iocCore is now supported on systems in
addition to vxWorks.

EPICS Overview

An overview of EPICS is presented, showing how the IOC software fits into EPICS. This is the only chapter that
discusses OPI software and Channel Access rather than just IOC related topics.

EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including directory
structure, environment and system requirements, configuration files, Makefiles, and related build tools.

Database Locking, Scanning, and Processing

Overview of three closely related IOC concepts. These concepts are at the heart of what constitutes an EPICS IOC.

Database Definition

This chapter gives a complete description of the format of the files that describe IOC databases. This is the format
used by Database Configuration Tools and is also the format used to load databases into an IOC.

IOC Initialization

A great deal happens at IOC initialization. This chapter removes some of the mystery about initialization.

Access Security

Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also how it is
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.

IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.

Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.

Device Support
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 7

Chapter 1: Introduction
Overview
The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly access
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access

This is a library that works on Unix and vxWorks and on initialized or uninitialized EPICS databases.

Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library

A set of routines are provided for device support modules that use shared resources such as VME address space.

EPICS General Purpose Tasks

General purpose callback tasks and task watchdog.

Database Scanning

Database scan tasks, i.e. the tasks that request records to process.

IOC Shell

The EPICS IOC shell is a simple command interpreter which provides a subset of the capabilities of the vxWorks
shell.

libCom

EPICS base includes a subdirectory src/libCom, which contains a number of c and c++ libraries that are used by
the other components of base. This chapter describes most of these libraries.

libCom OSI

This chapter describes the libraries in libCom that provide Operating System Independent (OSI) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support. Since
on some systems this always returns failure, a registry facility is provided to implement the binding. The basic idea
is that any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures

A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it does not describe other EPICS tools
which run in an IOC such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

• EPICS Record Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.
8 EPICS IOC Application Developer’s Guide

Chapter 1: Introduction
Acknowledgments
• EPICS IOC Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/iocScm-3.13.2/index.html

• vxWorks Programmer’s Guide, Wind River Systems

• vxWorks Reference Manual, Wind River Systems

• RTEMS C User’s Guide, Online Applications Research

1.2 Acknowledgments
The basic model of what an IOC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The principle
ideas for Channel Access were developed by Jeff Hill of LANL/GTA. Bob and Jeff also were the principle implementers
of the original IOC software. This software (called GTACS) was developed over a period of several years with feedback
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the major goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the data
structures needed to support extendible record and device support and for making the changes needed to the IOC resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules necessary to
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration Tool
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various features
of the IOC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed the ASCII database instance
format now used as the standard format. At that time he also created dbLoadRecords and dbLoadTemplate.

The build utility method resulted in the generation of binary files of UNIX that were loaded into IOCs. As new IOC
architectures started being supported this caused problems. During 1995, after learning from an abandoned effort now
referred to as EpicsRX, the build utilities and binary file (called default.dctsdr) were replaced by all ASCII files.
The new method provides architecture independence and a more flexible environment for configuring the record/device/
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Jeff Hill.
Bob Dalesio made sure that we did not go to far, i.e. 1) make it difficult to upgrade existing applications and 2) lose
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Access links,
a new library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle developers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as helping with the posix threads
implementation of osiSem and osiThread. Eric Norum provided the port to RTEMS and also contributed the shell that is
used on non vxWorks environments.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 9

Chapter 1: Introduction
Acknowledgments
10 EPICS IOC Application Developer’s Guide

Chapter 2: New Features for 3.14

2.1 Introduction
This is the third release of EPICS base that supports iocCore on non vxWorks operating systems.

The following components of iocCore are included with base:

• Database locking, scanning, and processing

• Channel access client and server support

• Standard record types and soft device support

• Access security

• General purpose soft device support.

• The port to non vxWorks operating systems is based on the following assumptions:

• All hardware support is unbundled from base.

• A multithreaded environment is necessary.

• Operating system independent (OSI) components are defined such that:

• vxWorks implementation has minimal overhead compared to vxWorks specific calls

• The components can be implemented via a combination of POSIX, POSIX.4 (posix real time), and POSIX
threads (pthreads).

• Each OS can use the posix implementation or provide it’s own implementation.

In order to provide a relatively easy conversion path for existing 3.13 applications, the old config rules are still supported.
Separate documentation explains how what must be done to convert 3.13 applications. We do NOT recommand
converting existing applications at this time unless some of the new features are needed.

2.2 Example Application
This section explains how to create an example IOC application in a directory <top>, naming the application
exampleApp and the ioc directory iocexample.

2.2.1 Check that EPICS_HOST_ARCH is defined

Execute the command:

echo $EPICS_HOST_ARCH (Unix)

or

set EPICS_HOST_ARCH (Windows)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 11

Chapter 2: New Features for 3.14
Example Application
This should display your workstation architecture, for example solaris-sparc or win32-x86. If you get an
"Undefined variable" error, you should set EPICS_HOST_ARCH to your host operating system followed by a dash and
then your host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been
provided to help set EPICS_HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl -t example example
<base>/bin/<arch>/makeBaseApp.pl -i -t example example

The last command will ask you to enter an architecture for the IOC, and provides a list of architectures for which base has
been built to choose from. It is important to enter the correct architecture for a vxWorks-based IOC. A different set of files
will be installed for non-vxWorks operating systems, but other than that distinction choosing the correct architecture
currently makes no difference for host IOCs. If you are using multiple vxWorks target architectures the last command
should be given for each architecture with a different name

Windows Users Note: Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script names are
case sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bin\win32-x86\makeBaseApp.pl -t example example

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Sequencer Example

The sequencer is now supported as an unbundled product. The example includes an example state notation program;
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.st can be built, the sequencer must be built using the same version of base that the example uses.

To build sncExample edit the following files:

• configure/RELEASE - Set SNCSEQ to the location of the sequencer.

• exampleApp/src/Makefile - Remove comment character from the following lines:
example_SRCS += sncExample.stt
example_LIBS += seq
example_LIBS += pv
seq_DIR = $(SNCSEQ_LIB)
pv_DIR = $(SNCSEQ_LIB)

• iocBoot/iocexample - st.cmd has a command to start the sequence program. Just remove the comment character.

The Makefile also contains instructions for how to build sncExample as a standalone application, i.e. an application that
does not use an epics database.
12 EPICS IOC Application Developer’s Guide

Chapter 2: New Features for 3.14
Example Application
2.2.5 Build

In directory <top> execute the command

gnumake

Linux Note: On linux gnumake is the native make so just execute:

make

2.2.6 Inspect files

This time you will see the files generated by make as well as the original files.

2.2.7 Run the ioc example

The example can be run on vxWorks, RTEMS, or on a supported host.

• vxWorks - Set your boot parameters as described below and then boot the ioc.

• RTEMS - RTEMS uses TFTP to read startup scripts and configuration files. On your TFTP server:

• Copy all db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.

• Copy all dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.

• Copy iocBoot/iocexample/st.cmd to <tftpbase>/epics/<target_hostname>/st.cmd.

• Transfer the application executable image to the target machine and start it. The method of doing this
depends on your target hardware. Typical methods include BOOTP/TFTP, booting from a floppy disk,
burning the application into flash memory or using gdb to download and execute the application.

• On a host, e.g. solaris

• cd <top>/iocBoot/iocexample

• ../../bin/solaris-sparc/example st.cmd

After the ioc is started try some of the shell commands (e.g. dbl or dbpr <recordname>) described in chapter "IOC
Test Facilities". In particular run dbl to get a list of the records.

Except on vxWorks a help facility is available. Just type:

help
help <cmd>

Where cmd is one of the commands displayed by help.

On vxWorks the help facility is available by first typing:

iocsh

2.2.8 Channel Access Host Examples

Two channel access examples are provided.

• caExample - This example accepts a pvname, connects and reads the current value for pvname, displays the result
and terminates. To run this example just type.
<mytop>/bin/<hostarch>/caExample <pvname>

where
<mytop> is the full path name to your application top directory.
<hostarch> is your host architecture.
<pvname> is one of the record names displayed by the dbl ioc shell command.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 13

Chapter 2: New Features for 3.14
Shell for non vxWorks environment
• caMonitor - This example accepts a filename. The file must contain a list of pvnames, each appearing on a separate
line. It connects to each pv and issues monitor requests. It displays messages for all channel access events,
connection, ,event, etc.

2.2.9 vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your IOC. Life is much easier if you find out how to
connect the serial port to a window on your workstation.

The vxWorks boot parameters look something like the following:

boot device : xxx
processor number : 0
host name : xxx
file name : <full path to board support>/vxWorks
inet on ethernet (e) : xxx.xxx.xxx.xxx:<netmask>
host inet (h) : xxx.xxx.xxx.xxx
user (u) : xxx
ftp password (pw) : xxx
flags (f) : 0x0
target name (tn) : <hostname for this inet address>
startup script (s) : <top>/iocBoot/iocexample/st.cmd

The actual values for each field are site and IOC dependent. Two fields that you can change at will are the vxWorks boot
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your IOC, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on your
workstation.

2.3 Shell for non vxWorks environment
Because the vxWorks shell is not available, EPICS base provides a simple shell iocsh. In the main program it can be
invoked as follows:

iocsh("filename")

or

iocsh(0)

If the argument is a filename, the commands in the file are executed and iocsh returns. If the argument is 0 then iocsh goes
into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter 19, “IOC Shell” on page 213
14 EPICS IOC Application Developer’s Guide

Chapter 2: New Features for 3.14
Some Unresolved Items
2.4 Some Unresolved Items
• Currently beacons do not perform properly if two or more versions of iocCore and/or portable servers are runing on

the same workstation.

• libcom reviewed

• C++ APIs in libCom. This is the third release of iocCore that is using C++. The current developer’s had
some major disputes about C++ conventions and design standards. Many disputes have already been
resolved but the C++ APIs may still change.

• osi naming conventions. Current naming conventions are not uniform.
• Most components that are new to 3.14 now start with the prefix epics. A few still start with osi.
• For C++ namespaces and the standard C++ library are causing a problem because they are not

implemented on all supported platforms.

• epicsThread
• Should epicsThreadDestroy be allowed?

• shell for non vxWorks environments

• Additional extensions to iocsh?

• Tcl/Tk wrapper ?

• facility initialization

• Use c++ static classes to initialize where possible. This is already done in many places. Are we missing
some?

• What should applications use?

• Lazy initialization? This is already done in many places. Are we missing some?

• Should logClient and logServer be moved to separate directory under src or even unbundled?

• devLib - Thus is actually support for VME. What should we do with devLib?

• Decorated Names. This is for creating win32 DLLs. We should consider a way of creating the DLLs which does
not require the decorated names.

• Compiler optimization switches. What should we use? Turning on the -g flag for GNU causes a factor of 10
increase in size of libraries on Linux.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 15

Chapter 2: New Features for 3.14
Some Unresolved Items
16 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview

3.1 What is EPICS?
EPICS consists of a set of software components and tools that Application Developers use to create a control system. The
basic components are:

• OPI: Operator Interface. This is a workstation which can run various EPICS tools.

• IOC: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI
based system using vxWorks or RTEMS as the realtime operating system.

• LAN: Local Area Network. This is the communication network which allows the IOCs and OPIs to communicate.
EPICS provides a software component, Channel Access, which provides network transparent communication
between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

The rest of this chapter gives a brief description of EPICS:

• Basic Attributes: A few basic attributes of EPICS.

• Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

• IOC Software: EPICS supplied IOC software components.

• Channel Access: EPICS software that supports network independent access to IOC databases.

• OPI Tools: EPICS supplied OPI based tools.

• EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not work.

3.2 Basic Attributes
The basic attributes of EPICS are:

IOC

LAN

IOC

OPI OPI OPI.

.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 17

Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)
• Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for custom
coding and helps ensure uniform operator interfaces.

• Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the network is not saturated, no
single bottle neck is present. A distributed system scales nicely. If a single IOC becomes saturated, its functions can
be spread over several IOCs. Rather than running all applications on a single host, the applications can be spread
over many OPIs.

• Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll IOCs for changes, a Channel Access client can request that it be
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response times.

• High Performance: A SPARC based workstation can handle several thousand screen updates a second with each
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per second,
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

3.3.1 OPI

Hardware

• Unix based Workstations: Well supported platforms include SOLARIS, and HP-UX

• Linux

• Windows NT

• Limited support for VMS

Software

• UNIX or Linux or winNT

• X Windows

• Motif Toolkit

3.3.2 LAN

Hardware

• Ethernet (most flavors)

Software

• TCP/IP protocols via sockets

3.3.3 IOC

Hardware

• VME/VXI bus and crates

• Various VME modules (ADCs, DAC, Binary I/O, etc.)

• Allen Bradley Scanner (Most AB I/O modules)

• GPIB devices

• BITBUS devices
18 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
IOC Software Components
• CAMAC

• CANBUS

• Motorola 68xxx

• Intel

• PowerPC

• Sparc

Software

• vxWorks operating system

• Real time kernel

• Extensive “Unix like” libraries

• RTEMS

• Host, e.g. solaris

3.4 IOC Software Components
An IOC contains the following EPICS supplied software components.

• IOC Database: The memory resident database plus associated data structures.

• Database Access: Database access routines. With the exception of record and device support, all access to the
database is via the database access routines.

• Scanners: The mechanism for deciding when records should be processed.

• Record Support: Each record type has an associated set of record support routines.

• Device Support: Each record type can have one or more sets of device support routines.

• Device Drivers: Device drivers access external devices. A driver may have an associated driver interrupt routine.

Ethernet

Channel
Access

Sequencer

Scanners

Monitors
Database
Access IOC Database

Driver or
Device

Interrupt
Routines

Record Support

Device Support

Device
Drivers

VME
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 19

Chapter 3: EPICS Overview
IOC Software Components
• Channel Access: The interface between the external world and the IOC. It provides a network independent
interface to database access.

• Monitors: Database monitors are invoked when database field values change.

• Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

3.4.1 IOC Database

The heart of each IOC is a memory resident database together with various memory resident structures describing the
contents of the database. EPICS supports a large and extensible set of record types, e.g. ai (Analog Input), ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and others are specific to particular
record types. Every record has a record name and every field has a field name. The first field of every database record
holds the record name, which must be unique across all IOCs that are attached to the same TCP/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, all access to the database is via the channel or database access routines.
See Chapter 15, “Runtime Database Access” on page 173 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible: Periodic,
Event, I/O Event, Passive and Scan Once.

• Periodic: A request can be made to process a record periodically. A number of time intervals are supported.

• Event: Event scanning is based on the posting of an event by any IOC software component. The actual subroutine
call is:
post_event(event_num)

• I/O Event: The I/O event scanning system processes records based on external interrupts. An IOC device driver
interrupt routine must be available to accept the external interrupts.

• Passive: Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

• Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for a record to be processed one time.

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any number and type of records. Similarly, record support contains no
device specific knowledge, giving each record type the ability to have any number of independent device support
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then a device driver can be developed.

Record types not associated with hardware do not have device support or device drivers.
20 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
Channel Access
The IOC software is designed so that the database access layer knows nothing about the record support layer other than
how to call it. The record support layer in turn knows nothing about its device support layer other than how to call it.
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design allows a
particular installation and even a particular IOC within an installation to choose a unique set of record types, device types,
and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all functions):

• Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access links.

• Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

• Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database records
via database links, or to other IOCs via Channel Access links.

• Raise Alarms: Check for and raise alarms.

• Monitor: Trigger monitors related to Channel Access callbacks.

• Link: Trigger processing of linked records.

3.4.5 Channel Access

Channel Access is discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified when
database values change without constantly polling the database. A mask can be set to specify value changes, alarm
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channel Access
Channel Access provides network transparent access to IOC databases. It is based on a client/ server model. Each IOC
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIs and IOCs. A client can communicate with an arbitrary number
of servers.

3.5.1 Client Services

The basic Channel Access client services are:

• Search: Locate the IOCs containing selected process variables and establish communication with each one.

• Get: Get value plus additional optional information for a selected set of process variables.

• Put: Change the values of selected process variables.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 21

Chapter 3: EPICS Overview
OPI Tools
• Add Event: Add a change of state callback. This is a request to have the server send information only when the
associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

• Status: Alarm status and severity.

• Units: Engineering units for this process variable.

• Precision: Precision with which to display floating point numbers.

• Time: Time when the record was last processed.

• Enumerated: A set of ASCII strings defining the meaning of enumerated values.

• Graphics: High and low limits for producing graphs.

• Control: High and low control limits.

• Alarm: The alarm HIHI, HIGH, LOW, and LOLO values for the process variable.

It should be noted that Channel Access does not provide access to database records as records. This is a deliberate design
decision. This allows new record types to be added without impacting any software that accesses the database via Channel
Access, and it allows a Channel Access client to communicate with multiple IOCs having differing sets of record types.

3.5.2 Search Server

Channel Access provides an IOC resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checks to see if any of the process variables are
located in this IOC, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each IOC
containing process variables the client uses. The connection request server, in the IOC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put. The ca_get and
ca_put requests map to dbGetField and dbPutField database access requests. ca_add_event requests result in
database monitors being established. Database access and/or record support routines trigger the monitors via a call to
db_post_event.

3.5.4 Connection Management

Each IOC provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server breaks
the connection. When a server crashes, the client automatically re-establishes communication when the server restarts.

3.6 OPI Tools
EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Access tools are real time tools, i.e. they are used to monitor and control IOCs.
22 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
EPICS Core Software
3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been developed. The following are some representative examples.

• MEDM: Motif version of combined display manager and display editor.

• DM: Display Manager. Reads one or more display list files created by EDD, establishes communication with all
necessary IOCs, establishes monitors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

• ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration file.

• AR: Archiver. General purpose tool to acquire and save data from IOCs.

• Sequencer: Runs in an IOC and emulates a finite state machine.

• BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. The tool can
be run via Unix commands or via a Graphical User Interface.

• KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

• PROBE: Allows the user to monitor and/or change a single process variable specified at run time.

• CAMATH: Channel Access interface for Mathematica.

• CAWINGZ: Channel Access interface for Wingz.

• IDL/PVWAVE Channel Access Interfaces exist for these products.

• TCL/TK Channel Access Interface for these products.

• CDEV - A library designed to provide a standard API to one or more underlying packages, typically control
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools
• JDCT: Java Database Configuration Tool. A JAVA based toll for creating run time databases.

• GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. This is no longer
being developed since it is based on an open source software system called unidraw, which is no longer being
supported.

• EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list file
contains a list of static, monitor, and control elements. Each monitor and control element has an associated process
variable.

• SNC: State Notation Compiler. It generates a C program that represents the states for the IOC Sequencer tool.

• Database Tools - Tools are provided which generate C include files from menu and record type database definition
files.

• Source/Release: EPICS provides a Source/Release mechanism for managing EPICS.

3.7 EPICS Core Software
EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

• Channel Access - Client and Server software

• IOC Database

• Scanners

• Monitors

• Database Definition Tools

• Source/Release
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 23

Chapter 3: EPICS Overview
EPICS Core Software
All other software components are optional. Of course, any application developer would be crazy to ignore tools such as
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and device
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device support
module, or driver could be deleted from a particular IOC and EPICS will still function.
24 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview
This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated IOC applications. Each <top> may be maintained separately. Different <top> areas
can be on different releases of external software such as EPICS base releases.

A <top> directory has the following directory structure:

 <top>/
 Makefile
 configure/
 dir1/
 dir2/
 ...

where configure is a directory containing build configuration files and a Makefile and where dir1, dir2, ... are user created
subdirectory trees with Makefiles and source files to be built.

4.1.2 Install Directories

The following directories may also exist in the installation directory, $(INSTALL_LOCATION). which defaults to
$(TOP), the <top> directory. They are created by the build and contain the installed build components.

• dbd - Directory into which Database Definition files are installed .

• include - The directory into which C header files are installed. These header files may be generated from menu and
record type definitions.

• bin - This directory contains a subdirectory for each host architecture and for each target architecture. These are the
directories in which executables, binaries, etc. are installed.

• lib - This directory contains a subdirectory for each host architecture. These are the directories in which libraries
are installed.

• db - This is the directory into which database record instance, template, and substitution files are installed.

• html - This is the directory into which html documentation is installed.

• templates - This is the directory into which template files are installed.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 25

Chapter 4: EPICS Build Facility
Overview
4.1.3 Elements of build system

The main ingredients of the build system are:

• A set of configuration files and tools provided in the EPICS base/configure directory

• A corresponding set of configuration files in the <top>/configure directory of a non-base <top> directory structure
to be built. The makeBaseApp.pl and makeBaseExt.pl scripts create these configuration files. Many of these files
just include a file of the same name from the base/configure directory.

• Makefiles in each directory of the <top> directory structure to be built

4.1.4 Features

The principal features of the build system are:

• Requires a single Makefile in each directory of a <top> directory structure

• Supports both host os vendor’s native compiler and GNU compiler

• Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

• Supports building EPICS base, extensions, and IOC applications.

• Supports multiple host and target operating system - architecture combinations.

• Allows builds for all hosts and targets within a single <top> source directory tree.

• Allows sharing of components such as special record/device/drivers across <top> areas.

• gnumake is the only command used to build a <top> area.

4.1.5 Environment Prerequisites

Only one environment variable, EPICS_HOST_ARCH, is required to build EPICS <top> areas. This variable should be
set to be your workstation's operating system - architecture combination to use the os vendor’s c/c++ compiler for native
builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler for native
builds if an alternate compiler is supported on your system. The filenames of the CONFIG.*.Common files in base/
configure/os show the currently supported EPICS_HOST_ARCH values. Examples are solaris-sparc,
solaris-sparc-gnu, linux-x86, win32-x86, and win32-x86-borland.

The startup directory in EPICS base contains a perl script, EpicsHostArch.pl, which can be used to define this
variable. This script can be invoked with a command line parameter defining the alternate compiler (e.g. if invoking
"EpicsHostArch.pl" yields solaris-sparc, then invoking "EpicsHostArch.pl gnu" will yield solaris-sparc-
gnu).

4.1.6 System Prerequisites

Before you can build EPICS components your host system must have the following software installed:

• Perl version 5 or greater

• GNU make, version 3.7 or greater

• C++ compiler (host operating system vendor's compiler or GNU compiler)

• If you will be building EPICS components for vxWorks targets you will also need:

• Tornado II and one or more board support packages. Consult the vxWorks documentation for details.
26 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Overview
4.1.7 Directory definitions

The configure files contain definitions for where to install various components. These are all relative to
INSTALL_LOCATION. The default value for INSTALL_LOCATION is $(TOP), and $(T_A) is the current build’s target
architecture.

INSTALL_LOCATION_LIB = $(INSTALL_LOCATION)/lib
INSTALL_LOCATION_BIN = $(INSTALL_LOCATION)/bin

INSTALL_HOST_BIN = $(INSTALL_LOCATION_BIN)/$(EPICS_HOST_ARCH)
INSTALL_HOST_LIB = $(INSTALL_LOCATION_LIB)/$(EPICS_HOST_ARCH)

INSTALL_INCLUDE = $(INSTALL_LOCATION)/include
INSTALL_DOC = $(INSTALL_LOCATION)/doc
INSTALL_HTML = $(INSTALL_LOCATION)/html
INSTALL_TEMPLATES = $(INSTALL_LOCATION)/templates
INSTALL_DBD = $(INSTALL_LOCATION)/dbd
INSTALL_DB = $(INSTALL_LOCATION)/db
INSTALL_CONFIG = $(INSTALL_LOCATION)/configure
INSTALL_JAVA = $(INSTALL_LOCATION)/javalib

#Directory for OS independant build created files
COMMON_DIR = ../O.Common

INSTALL_LIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_SHRLIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_TCLLIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_BIN = $(INSTALL_LOCATION_BIN)/$(T_A)

4.1.8 RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other <top>
directory structures containing files needed by the current <top>. When make is executed in configure, a perl script,
convertRelease.pl, generates CONFIG_APP_INCLUDE which contains include, bin, and library directory
definitions for each external <top> definition in the RELEASE file. CONFIG_APP_INCLUDE is included into the
CONFIG file so its definitions are available for use by Makefiles. Also when make is executed in configure,
convertRelease.pl, generates a RULES_INCLUDE file which contains an include statement for any existing
RULES_BUILD files from each external <top> in the RELEASE file. RULES_INCLUDE is included by the
RULES_BUILD file in EPICS base so all make rules in the external <top> RULES_BUILD files are available for use by
Makefiles.

For example, if configure/RELEASE contains the following definition:

CAMAC = /home/epics/modules/bus/camac

then the created CONFIG_APP_INCLUDE will contain the following lines

CAMAC_BIN = /home/epics/modules/bus/camac/bin/solaris-sparc
CAMAC_LIB = /home/epics/modules/bus/camac/lib/solaris-sparc
RELEASE_INCLUDES += -I/home/epics/modules/bus/camac/include
RELEASE_DBDFLAGS += -I /home/epics/modules/bus/camac/dbd

and the created RULES_INCLUDE will contain the following line

-include /home/epics/modules/bus/camac/configure/RULES_BUILD
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 27

Chapter 4: EPICS Build Facility
Overview
RELEASE_DBDFLAGS will appear on the command lines for the dbToRecordTypeH, mkmf.pl, and dbExpand tools, and
RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN can be used in a
Makefile to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific EPICS_HOST_ARCH architecture by providing a
configure/RELEASE.<epics_host_arch> file containing overriding definitons.

4.1.9 Specifying osclass

Definitions in a Makefile will apply to the host system (the platform on which make is executed) and each system defined
by CROSS_COMPILER_TARGET_ARCHS.

It is possible to limit the systems for which a particular definition applies. Most Makefile definitions can be specified with
an appended underscore "_" followed by an osclass specification . If an _<osclass> is not specified, then the definition
applies to the host and all CROSS_COMPILER_TARGET_ARCHS systems. If an _<osclass> is specified, then the
definition applies only to systems with the specified os class. A Makefile definition can also have an appended
_DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to all systems that do not
have an _<osclass> specification for that definition. If a _DEFAULT is appended on a defination but the definition should
not apply to a particular system <osclass>, the value "-nil-" should be specified in the relevent Makefile definition.

Each system has an OS_CLASS definition in its configure/os/CONFIG.Common.<arch> file. A few examples are:

For vxWorks-68040 and vxWorks-pentium the <osclass> is vxWorks.
For solaris-sparc,solaris-x86 and solaris-sparc-gnu, the <osclass> is solaris.
For win32-x86 the <osclass> is WIN32.

For example the following Makefile lines specify that product aaa should be created for all systems. Product bbb should
be created for systems that do not have OS_CLASS defined as solaris.

PROD = aaa
PROD_solaris = -nil-
PROD_DEFAULT = bbb

4.1.10 Host and Ioc targets

Build creates two type of makefile targets: Host and Ioc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. Ioc targets are components of ioc libraries, executables, object files, or iocsh scripts which
will be run on an ioc.

Each supported target system has a VALID_BUILDS definition which specifies the type of makefile targets it can support.
This definition appears in configure/so/CONFIG.Common.<arch> or configure/os/CONFIG.<arch>.<arch> files.

For vxWorks systems VALID_BUILDS is set to "Ioc".

For Unix type systems, VALID_BUILDS is set to "Host Ioc".

For RTEMS systems, VALID_BUILDS is set to "Ioc".

For WIN32 systems, VALID_BUILDS is set to "Host Ioc".

In a Makefile it is possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPT, and OBJS
is built. For example the following Makefile lines specify that product aaa should be created for systems that support Host
type builds. Product bbb should be created for systems that support Ioc type builds. Product ccc should be created for all
target systems.

PROD_HOST = aaa
PROD_IOC = bbb
PROD = ccc
28 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefiles
These definitions can be further limited by specifying an appended underscore "_" followed by an osclass or DEFAULT
specification.

4.2 Makefiles

4.2.1 Name

The name of the makefile in each directory must be Makefile.

4.2.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits" rules and definitions from configure.
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it possible to
share make variables and even rules across <top> directories.

4.2.3 Contents of Makefiles

Makefiles in directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure files,
and specify the subdirectories in the desired order of make execution. Running gnumake in a directory with the following
Makefile lines will cause gnumake to be executed in <dir1> first and then <dir2>. The build rules do not allow a Makefile
to specify both subdirectories and components to be built.

TOP=../..
include $(TOP)/configure/CONFIG
DIRS += <dir1> <dir2>
include $(TOP)/configure/RULES_DIRS

Makefiles in directories where components are to be built

A Makefile in this type of directory must define where <top> is relative to this directory, include <top> configure files, and
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a directory
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to build the
defined components in this subdirectory. It contains the following lines:

TOP=../../..
include $(TOP)/configure/CONFIG

<component definition lines>
include $(TOP)/configure/RULES

<optional rules definitions>

4.2.4 Simple Makefile examples

Create an IOC type library named asIoc from the source file asDbLib.c and install it into the
$(INSTALL_LOCATION)/lib/<arch> directory .
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 29

Chapter 4: EPICS Build Facility
Make
TOP=../../..
include $(TOP)/configure/CONFIG
LIBRARY_IOC += asIoc
asIoc_SRCS += asDbLib.c
include $(TOP)/configure/RULES

For each Host type target architecture, create an executable named catest from the catest1.c and catest2.c source files
linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
PROD_HOST = catest
catest_SRCS += catest1.c catest2.c
catest_LIBS = ca Com
include $(TOP)/configure/RULES

4.3 Make

4.3.1 Make vs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which is
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some systems,
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.3.2 Frequently used Make commands

NOTE: It is possible to invoke the following commands for a single target architecture by appending .<arch> to the target
in the command.

The most frequently used make commands are:

gnumake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as gnumake install

gnumake <arch>
This rebuilds and installs everything that is not up to date for a single specified target arch.
NOTE: This is the same as gnumake install.<arch>

gnumake clean
This can be used to save disk space by deleting the O.<arch> directories, but does not remove any installed files
from the bin, db, dbd etc. directories. .<arch> can be appended to invoke clean for a single architecture.

gnumake rebuild
This is the same as gnumake clean install. If you are unsure about the state of the generated files in an application,
just execute gnumake rebuild.

gnumake uninstall
30 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
This command can be executed from the <top> directory only. It will remove everything installed by gnumake in
the include, lib, bin, db, dbd, etc. directories.

gnumake tar
This command can be executed from the <top> directory only. It will make a tar image of the entire <top>
directory structure (excluding any CVS directories). This target is available on Unix type hosts only.

4.3.3 Make targets

The following is a summary of targets that can be specified for gnumake:

• <action>

• <arch>

• <action>.<arch>

• <dir>

• <dir>.<action>

• <dir>.<arch>

• <dir>.<action>.<arch>

where:

<arch> is EPICS_HOST_ARCH, solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is clean, inc, install, build, rebuild, buildInstall, or uninstall
NOTE: uninstall can only be specified at <top>
<dir> is subdirectory name

Note: You can build using your os vendors’ native compiler and also build using a supported alternate compiler in the
same directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changining your EPICS_HOST_ARCH, environment
variable between builds or by setting EPICS_HOST_ARCH on the gnumake command line.

4.3.4 Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <prodname>_SRCS) will have their header file dependencies automatically generated and
included as part of the Makefile if HDEPENDS is set to YES in the Makefile and/or in base/configure/CONFIG_SITE.

4.4 Makefile definitions
The following components can be defined in a Makefile to be built when gnumake is invoked:

4.4.1 Source file directories

Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific source
files are allowed and should reside in subdirectories os/<os_class> or os/posix or os/default.

The build rules also allow source files to reside in subdirectories of the current Makefile directory (src directory). For
each subdirectory <dir> containing source files add the SRC_DIRS definition.

SRC_DIRS += <dir>
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 31

Chapter 4: EPICS Build Facility
Makefile definitions
where <dir> is a relative path definition. An example of SRC_DIRS is

SRC_DIRS += ../<dir1> ../<dir2>

The directory search order for the above definition is

.

../os/$(OS_CLASS) ../os/posix ../os/default

../dir1/os/$(OS_CLASS) ../dir1/os/posix ../dir1/os/default

../dir2/os/$(OS_CLASS) ../dir2/os/posix ../dir2/os/default

..

../dir1 ../dir2

where the build directory O.<os_class> is . and the src directory is ...

4.4.2 Breakpoint Tables

For each breakpoint table dbd file, bpt<table name>.dbd, to be created from an existing bpt<table name>.data file, add the
definition

DBD += bpt<table name>.dbd

to the Makefile. The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data file and
install the new dbd file into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..
include $(TOP)/configure/CONFIG
DBD += bptTypeJdegC.dbd
include $(TOP)/configure/RULES

4.4.3 Record Type Definitions

For each new record type, the following definition should be added to the makefile:

DBINC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file. This header will be installed
into the $(INSTALL_LOCATION)/include directory and the dbd file will be installed into the $(INSTALL_LOCATION)/
dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into
$(INSTALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_LOCATION)/dbd.

TOP=../../..
include $(TOP)/configure/CONFIG
DBINC += xxxRecord
include $(TOP)/configure/RULES

4.4.4 Menus

If a menu menu<name>.dbd file is present, then add the following definition:

DBDINC += menu<name>.h

The header file, menu<name>.h will be created from the existing menu<name>.dbd file and installed into the
$(INSTALL_LOCATION)/include directory and the menu dbd file will be installed into $(INSTALL_LOCATION)/dbd .
32 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h to $(INSTALL_LOCATION)/include and menuConvert.dbd to $(INSTALL_LOCATION)/dbd.

TOP=../../..
include $(TOP)/configure/CONFIG
DNDINC = menuConvert.h
include $(TOP)/configure/RULES

4.4.5 Expanded Database Definition File

Database definition files named <name>Include.dbd containing includes for other database definition files can be
expanded by utility dbExpand into a created <name>.dbd file and the <name>.dbd file will be installed into
$(INSTALL_LOCATION)/dbd. The following variables control the process:

DBD += <name>.dbd
USR_DBDFLAGS += -I <include path>
USR_DBDFLAGS += -S <macro substitutions>

where the entries are:

DBD += <name>.dbd

The name of the output dbd file to contain the expanded definitions. It will be created from an existing
<name>Include.dbd file and installed into $(INSTALL_LOCATION)/dbd. An example of a file to be exanded is
exampleInclude.dbd containing the following lines

include "base.dbd"
include "xxxRecord.dbd"
device(xxx,CONSTANT,devXxxSoft,"SoftChannel")

USR_DBDFLAGS defines optional flags for dbExpand. Currently only an include path (-I <path>) and macro substitution
(-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <top>/dbd directories will
automatically be added during the build if the <top> names are specified in the configure/RELEASE file.

The following Makefile will create an expanded dbd file named example.dbd from an existing exampleInclude.dbd file
and install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..
include $(TOP)/configure/CONFIG
DBD += exampleApp.dbd
include $(TOP)/configure/RULES

4.4.6 Registering Support Routines for Expanded Database Definition Files

A source file which registers record/device/driver support routines can be created. The list of routines to register is
obtained from an existing dbd file.

The following line in a Makefile will result in <name>_registerRecordDeviceDriver.cpp being created,
compiled, and linked into <prodname>. It requires that the file <name>.dbd exist.

<prodname>_SRCS += <name>_registerRecordDeviceDriver.cpp

4.4.7 Database Definition Files

The following line installs the existing named dbd files into $(INSTALL_LOCATION)/dbd without expansion.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 33

Chapter 4: EPICS Build Facility
Makefile definitions
DBD += <name>.dbd

4.4.8 Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:

DB += xxx.db

Generates xxx.db depending on which source files exist and installs it into $(INSTALL_LOCATION)/db.

DB += xxx.template xxx.substitutions

Generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name must be
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated as its argument. If (and only if) there are
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the name of any
template used within the directory.

In order to record dependency information correctly all template files that are needed but not installed (i.e. those not listed
in DB), must be added to the USES_TEMPLATE variable:

USES_TEMPLATE += yyy.template
USES_TEMPLATE += $(SHARE)/installDb/zzz.template

If specified with a path (full or relative), the templates will be soft linked (UNIX) or copied (WIN) into the O.<arch>
directory. After the first make run, template dependencies will be generated automatically.

4.4.9 Libraries

A library is created and installed into $(INSTALL_LOCATION)/lib/<arch> by specifying it’s name and the name of the
object and/or source files containing code for the library. An object or source file name can appear with or without a
directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location.
If a directory prefix is not present, make will first look in the source directory for a file with the specified name and next
try to create the file using existing configure rules. A library filename prefix may be prepended to the library name when
the file is created. For Unix type systems and vxWorks the library prefix is lib and there is no prefix for WIN32. Also a
library suffix appropriate for the library type and target arch (e.g. .a, .so, .lib, .dll) will be appended to the filename when
the file is created.

vxWorks Note: For R3.14alpha3 and later releases, archive libraries will be created.

Shared libraries Note: Shared libraries can be built for any or all HOST type architectures. The definition of
SHARED_LIBRARIES (YES/NO) in base/configure/CONFIG_SITE determines whether shared or archive libraries will
be built. When SHARED_LIBRARIES is YES, both archive and shared libraries are built. This definition can be
overridden for a specific arch in an configure/os/CONFIG_SITE.<arch>.Common file.,The default definition for
SHARED_LIBRARIES in the EPICS base distribution file is YES for win32 and NO for all other hosts.

win32 Note: An object library file is created when SHARED_LIBRARIES=NO, <name>Obj.lib which is installed into
$(INSTALL_LOCATION)/lib/<arch>. Three library files are created when SHARED_LIBRARIES=YES, <name>.lib
and <name>Obj.lib which are installed into $(INSTALL_LOCATION)/lib/<arch>, and <name>.dll which is installed into
$(INSTALL_LOCATION)/bin/<arch>. (Warning: The file <name>.lib will only be created by the build if there are
exported symbols from the library.) If SHARED_LIBRARIES=YES, the directory $(INSTALL_LOCATION)/bin/
<arch> must be in the user’s path during builds to allow invoking executables which were linked with shared libraries.

Unix Host Note: If SHARED_LIBRARIES=YES, the directory $(INSTALL_LOCATION)/lib/<arch> must be in the
user’s LD_LIBRARY_PATH when invoking executables which were linked with shared libraries.
34 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
4.4.9.1 Specifying the library name.

Any of the following can be specified:

LIBRARY += <name>
A library will be created for every target arch.

LIBRARY_<osclass> += <name>
Library <name> will be created for all archs of the specified osclass.

LIBRARY_DEFAULT += <name>
Library <name> will be created for any arch that does not have a LIBRARY_<osclass> definition

LIBRARY_IOC += <name>
Library <name> will be created for IOC type archs.

LIBRARY_IOC_<osclass> += <name>
Library <name> will be created for all IOC type archs of the specified osclass.

LIBRARY_IOC_DEFAULT += <name>
Library <name> will be created for any IOC type arch that does not have a LIBRARY_IOC_<osclass>
definition

LIBRARY_HOST += <name>
Library <name> will be created for HOST type archs.

LIBRARY_HOST_<osclass> += <name>
Library <name> will be created for all HOST type archs of the specified osclass.

LIBRARY_HOST_DEFAULT += <name>
Library <name> will be created for any HOST type arch that does not have a LIBRARY_HOST_<osclass>
definition

4.4.9.2 Specifying library source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>
Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>
Source files will be used for all defined libraries and products for any arch that does not have a
SRCS_<osclass> definition

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is retained for R3.13 compatibility.

LIBSRCS += <name>
Source files will be used for all defined libraries.

LIBSRCS_<osclass> += <name>
Source files will be used for all defined libraries for all archs of the specified osclass.

LIBSRCS_DEFAULT += <name>
Source files will be used for all defined libraries for any arch that does not have a LIBSRCS_<osclass>
definition

LIB_SRCS += <name>
Source files will be used for all libraries.

LIB_SRCS_<osclass> += <name>
Source files will be used for all defined libraries for all archs of the specified osclass.

LIB_SRCS_DEFAULT += <name>
Source files will be used for all defined libraries for any arch that does not have a LIB_SRCS_<osclass>
definition

<libname>_SRCS += <name>
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 35

Chapter 4: EPICS Build Facility
Makefile definitions
Source files will be used for the named library.
<libname>_SRCS_<osclass> += <name>

Source files will be used for named library for all archs of the specified osclass.
<libname>_SRCS_DEFAULT += <name>

Source files will be used for named library for any arch that does not have a <libname>_SRCS_<osclass>
definition

4.4.9.3 Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source File
Names above.

Object file names, which should have a directory prefix and which do not need a suffix such as .o, are defined as follows:

LIB_OBJS += <name>
Object files will be used in builds of all libraries)

LIB_OBJS_<osclass> += <name>
Object files will be used in builds of all libraries for archs of the specified osclass.

LIB_OBJS_DEFAULT += <name>
Object files will be used in builds of all libraries for archs without a LIB_OBJS_<osclass> definition
specified.

<libname>_OBJS += <name>
Object files will be used for all builds of the named library)

<libname>_OBJS_<osclass> += <name>
Object files will be used in builds of the library for archs with the specified osclass.

<libname>_OBJS_DEFAULT += <name>
Object files will be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition
specified.

4.4.9.4 LIBOBJS definitions

Previous versions of epics (3.13 and before) accepted definitions like:

LIBOBJS += $(<support>_BIN)/xxx.o

These are gathered together in files such as baseLIBOBJS. To use such definitions include the lines:

-include ../baseLIBOBJS
<libname>_OBJS += $(LIBOBJS)

Note: vxWorks applications created by makeBaseApp.pl from base release R3.14.0alpha3 and later no longer have a file
named baseLIBOBJS, base record and device support now exists in archive libraries.

4.4.9.5 Specifying library DLL file names

The library builds on WIN32 require all external references to be resolved, so if a library contains references to items in
other DLL libraries, these DLL library names must be specified (without directory prefix and without ".dll" suffix) as
follows:

DLL_LIBS += <name>
These DLLs will be used for all libraries.

<library_name>_DLL_LIBS += <name>
These DLLs will be used for the named library.

Each DLL must have a corresponding <dll_name>_DIR definition specifying its directory location.
36 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
4.4.9.6 Library example:

LIBRARY_vxWorks += vxWorksOnly
LIBRARY_IOC += iocOnly
LIBRARY_HOST += hostOnly
LIBRARY += all

vxWorksOnly_OBJS += $(LINAC_BIN)/vxOnly1
vxWorksOnly_SRCS += vxOnly2.c
iocOnly_OBJS += $(LINAC_BIN)/iocOnly1
iocOnly_SRCS += iocOnly2.cpp
hostOnly_OBJS += $(LINAC_BIN)/host1
all_OBJS += $(LINAC_BIN)/all1
all_SRCS += all2.cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in the <top>/
CONFIGURE/RELEASE file, then the following libraries will be created:

• $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a : $(LINAC_BIN)/vxOnly1.o vxOnly2.o

• $(INSTALL_LOCATION)/bin/vxWork-68040/libiocOnly.a : $(LINAC_BIN/iocOnly1.o iocOnly2.o

• $(INSTALL_LOCATION)/lib/solaris-sparc/libiocOnly.a : $(LINAC_BIN)/iocOnly1.o iocOnly2.o

• $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a : $(LINAC_BIN)/host1.o

• $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a : $(LINAC_BIN)/all1.o all2.o

• $(INSTALL_LOCATION)/lib/solaris-sparc/liball.a : $(LINAC_BIN)/all1.o all2.o

4.4.10 Generate and install object Files

It is possible to generate and install object files by using definitions:

OBJS += <name>
OBJS_<osclass> += <name>
OBJS_DEFAULT += <name>
OBJS_IOC += <name>
OBJS_IOC_<osclass> += <name>
OBJS_IOC_DEFAULT += <name>
OBJS_HOST += <name>
OBJS_HOST_<osclass> += <name>
OBJS_HOST_DEFAULT += <name>

These will cause the specified file to be generated from an existing source file for the appropriate target arch and installed
into $(INSTALL_LOCATION)/bin/<target_arch>.

The following Makefile will create the abc object file for all target architectures, the object file def for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
OBJS += abc
OBJS_vxWorks += xyz
OBJS_DEFAULT += def
include $(TOP)/configure/RULES
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 37

Chapter 4: EPICS Build Facility
Makefile definitions
4.4.11 State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:

<prodname>_SRCS += <name>.stt

The state notation compiler, snc, will create two files. <name>.c, which contains source code generated from
<name>.stt, and <name>_sncreg.cpp, which contains C++ source code to register the snc programs so that
they can be invoked from the shell. These two files are compiled and the resulting object files are linked into the
<prodname> product.

A state notation source file must have the extension .st or.stt. The .stt file is passed through the C preprocessor
before it is processed by snc.

4.4.12 Scripts, etc.

Any of the following can be specified:

SCRIPT += <name>
A script will be installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch> directories.

SCRIPT_<osclass> += <name>
Script <name> will be installed for all archs of the specified osclass.

SCRIPT_DEFAULT += <name>
Script <name> will be installed for any arch that does not have a SCRIPT_<osclass> definition

SCRIPT_IOC += <name>
Script <name> will be installed for IOC type archs.

SCRIPT_IOC_<osclass> += <name>
Script <name> will be installed for all IOC type archs of the specified osclass.

SCRIPT_IOC_DEFAULT += <name>
Script <name> will be installed for any IOC type arch that does not have a SCRIPT_IOC_<osclass>
definition

SCRIPT_HOST += <name>
Script <name> will be installed for HOST type archs.

SCRIPT_HOST_<osclass> += <name>
Script <name> will be installed for all HOST type archs of the specified osclass.

SCRIPT_HOST_DEFAULT += <name>
Script <name> will be installed for any HOST type arch that does not have a SCRIPT_HOST_<osclass>
definition

Definitions of the form:

SCRIPTS_DEFAULT += <name1>
SCRIPTS_<osclass> += <name2>

results in the <name2> script being installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch>
directories for all target archs of the specified os class <osclass> and the <name1> script installed into the
$(INSTALL_LOCATION)/bin/<arch> directories of all other target archs.

4.4.13 Include files

A definition of the form:

INC += <name>.h

results in file <name>.h being installed from a source directory to the $(INSTALL_LOCATION)/include directory.
38 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
Definitions of the form:

INC_DEFAULT += <name>.h
INC_<osclass> += <name>.h

results in file <name>.h being installed from a source directory into the appropriate $(INSTALL_LOCATION)/include/
os/<osclass> directory..

4.4.14 Html and Doc files

A definition of the form:

HTMLS_DIR = <dirname>
HTMLS += <name>

results in file <name> being installed from the src directory to the $(INSTALL_LOCATION)/html/<dirname> directory.

A definition of the form:

DOCS += <name>

results in file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

4.4.15 Templates

Adding definitions of the form

TEMPLATES_DIR = <dirname>
TEMPLATES += <name>

results in the file <name> being installed from the src directory to the $(INSTALL_LOCATION)/templates/<dirname>
directory. If a directory structure of template files is to be installed, the template file names may include a directory prefix.

4.4.16 Lex and yac

If a <name>.c source file specified in a Makefile definition is not found in the source directory, gnumake will try to build
it from <name>.y and <name>_lex.l files in the source directory.

4.4.17 Products

A product executable is created for each <arch> and installed into $(INSTALL_LOCATION)/bin/<arch> by specifying
it’s name and the name of either the object or source files containing code for the product. An object or source file name
can appear with or without a directory prefix. Object files should contain a directory prefix. If the file has a directory
prefix e.g. $(EPICS_BASE_BIN), the file is taken from the specified location. If a directory prefix is not present, make
will look in the source directory for a file with the specified name or try build it using existing rules. An executable
filename suffix appropriate for the target arch (e.g. .exe) may be appended to the filename when the file is created.

PROD specifications in the Makefile for vxWorks target architectures create a combined object file with library references
resolved and a corresponding .munch file.

<PROD += <name>
<name>_SRC += <srcname>.c

results in the executable <name> being built for each HOST type <arch> from a <srcname>.c file. Then <name> is
installed into the $(INSTALL_LOCATION)/bin/<arch> directory.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 39

Chapter 4: EPICS Build Facility
Makefile definitions
4.4.17.1 Specifying the product name.

Any of the following can be specified:

PROD += <name>
Product <name> will be created for every HOST type target arch .

PROD_<osclass> += <name>
Product <name> will be created for all archs of the specified osclass.

PROD_DEFAULT += <name>
Product <name> will be created for any HOST type arch that does not have a PROD_<osclass> definition

PROD_IOC += <name>
Product <name> will be created for IOC type archs.

PROD_IOC_<osclass> += <name>
Product <name> will be created for all IOC type archs of the specified osclass.

PROD_IOC_DEFAULT += <name>
Product <name> will be created for any IOC type arch that does not have a PROD_IOC_<osclass>
definition

PROD_HOST += <name>
Product <name> will be created for HOST type archs.

PROD_HOST_<osclass> += <name>
Product <name> will be created for all HOST type archs of the specified osclass.

PROD_HOST_DEFAULT += <name>
Product <name> will be created for any HOST type arch that does not have a PROD_HOST_<osclass>
definition

4.4.17.2 Specifying product object file names

Object file names, which do not need a suffix such as .o but should have a directory prefix, are defined as follows:

PROD_OBJS += <name>
Object files will be used in builds of all products

PROD_OBJS_<osclass> += <name>
Object files will be used in builds of all products for archs with the specified osclass.

PROD_OBJS_DEFAULT += <name>
Object files will be used in builds of all products for archs without a PROD_OBJS_<osclass> definition
specified.

<prodname>_OBJS += <name>
Object files will be used for all builds of the named product

<prodname>_OBJS_<osclass> += <name>
Object files will be used in builds of the named product for archs with the specified osclass.

<prodname>_OBJS_DEFAULT += <name>
Object files will be used in builds of the named product for archs without a <prodname>_OBJS_<osclass>
definition specified.

4.4.17.3 Specifying product source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>
Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>
40 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions
Source files will be used for all defined libraries and products for any arch that does not have a
SRCS_<osclass> definition

PROD_SRCS += <name>
Source files will be used for all products.

PROD_SRCS_<osclass> += <name>
Source files will be used for all defined products for all archs of the specified osclass.

PROD_SRCS_DEFAULT += <name>
Source files will be used for all defined products for any arch that does not have a PROD_SRCS_<osclass>
definition

<prodname>_SRCS += <name>
Source file will be used for the named product.

<prodname>_SRCS_<osclass> += <name>
Source files will be used for named product for all archs of the specified osclass.

<prodname>_SRCS_DEFAULT += <name>
Source files will be used for named product for any arch that does not have a <prodname>_SRCS_<osclass>
definition

4.4.17.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor a library from EPICS_BASE, a <library_name>_DIR
definition must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory prefix nor a suffix, are defined as follows:

PROD_LIBS += <name>
Libraries to be used when linking all defined products.

PROD_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclass when linking all defined products.

PROD_LIBS_DEFAULT += <name>
Libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when linking all
defined products.

USR_LIBS += <name>
Libraries to be used when linking all defined products.

USR_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclasswhen linking all defined products.

USR_LIBS_DEFAULT += <name>
Libraries to be used for any arch that does not have a USR_LIBS_<osclass> definition when linking all
defined products.

<prodname>_LIBS += <name>
Libraries to be used for linking the named product.

<prodname>_LIBS_<osclass> += <name>
Libraries will be used for all archs of the specified osclass for linking named product.

<prodname>_LIBS_DEFAULT += <name>
Libraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when linking
named product.

SYS_PROD_LIBS += <name>
System libraries to be used when linking all defined products.

SYS_PROD_LIBS_<osclass> += <name>
System libraries to be used for all archs of the specified osclass when linking all defined products.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 41

Chapter 4: EPICS Build Facility
Makefile definitions
SYS_PROD_LIBS_DEFAULT += <name>
System libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when
linking all defined products.

<prodname>_SYS_LIBS += <name>
System libraries to be used for linking the named product.

<prodname>_SYS_LIBS_<osclass> += <name>
System libraries will be used for all archs of the specified osclass for linking named product.

<prodname>_SYS_LIBS_DEFAULT += <name>
System ibraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when
linking named product.

4.4.18 Test Products

Test products are product executables that are created but not installed into $(INSTALL_LOCATION)/bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:

TESTPROD += <name>
Test product <name> will be created for every target arch.

TESTPROD_<osclass> += <name>
Test product <name> will be created for all archs of the specified osclass.

TESTPROD_DEFAULT += <name>
Test product <name> will be created for any arch that does not have a TESTPROD_<osclass> definition

TESTPROD_IOC += <name>
Test product <name> will be created for IOC type archs.

TESTPROD_IOC_<osclass> += <name>
Test product <name> will be created for all IOC type archs of the specified osclass.

TESTPROD_IOC_DEFAULT += <name>
Test product <name> will be created for any IOC type arch that does not have a
TESTPROD_IOC_<osclass> definition

TESTPROD_HOST += <name>
Test product <name> will be created for HOST type archs.

TESTPROD_HOST_<osclass> += <name>
Test product <name> will be created for all HOST type archs of the specified osclass.

TESTPROD_HOST_DEFAULT += <name>
Test product <name> will be created for any HOST type arch that does not have a
TESTPROD_HOST_<osclass> definition

4.4.19 Target files

A definition of the form:

TARGETS += <name>

results in the file <name> being built in the O.<arch> directory from existing rules and files in the source directory. These
target files are not installed.

4.4.20 Bin install files

Definitions of the form:
42 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions
BIN_INSTALLS += <name>
BIN_INSTALLS_DEFAULT += <name>
BIN_INSTALLS_<osclass> += <name>

result in files being installed to the appropriate $(INSTALL_LOCATION)/bin/<arch> directory. The file <name> can
appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN), it is copied from the
specified location. If a directory prefix is not present, make will look in the source directory for the file.

4.4.21 TCL libraries

Definitions of the form:

TCLLIBNAME += <name>
TCLINDEX += <name>

result in the specified tcl files being installed to the $(INSTALL_LOCATION)/lib/<arch> directory.

4.5 Table of Makefile definitions
Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a _DEFAULT setting is
given but a particular <osclass> requires that the default not apply and there are no items in the definition that apply for
that <osclass>, the value "-nil-" should be specified in the relevent Makefile definition.

Build Option Description

Products to be built (host type archs only)

PROD products (names without execution suffix) to build and install. Specify
xyz to build executable xyz on Unix and xyz.exe on WIN32

PROD_<osclass> os class specific products to build and install for <osclass> archs only

PROD_DEFAULT products to build and install for archs with no PROD_<osclass>
specified

PROD_IOC name of product to build and install for ioc type archs

PROD_IOC_<osclass> os specific product to build and install for ioc type archs

PROD_IOC_DEFAULT products to build and install for ioc type arch systems with no
PROD_IOC_<osclass> specified

PROD_HOST name of product to build and install for host type archs.

PROD_HOST_<osclass> os class specific products to build and install for <osclass> type archs

PROD_HOST_DEFAULT products to build and install for arch with no PROD_HOST_<osclass>
specified

Test products to be built (host type archs only)

TESTPROD test products (names without execution suffix) to build but not install

TESTPROD_<osclass> os class specific test product names to build but not install
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 43

Chapter 4: EPICS Build Facility
Table of Makefile definitions
TESTPROD_DEFAULT test products to build but not install for archs with no
TESTPROD_<osclass> specified

TESTPROD_IOC name of test product to build and install for ioc type archs

TESTPROD_IOC_<osclass> os specific test product to build and install for ioc type archs

TESTPROD_IOC_DEFAULT test products to build and install for ioc type arch systems with no
TESTPROD_IOC_<osclass> specified

TESTPROD_HOST name of testproduct to build and install for host type archs.

TESTPROD_HOST_<osclass> os class specific testproducts to build and install for <osclass> type
archs

TESTPROD_HOST_DEFAULT test products to build and install for arch with no
TESTPROD_HOST_<osclass> specified

Libraries to be built

LIBRARY name of library to build and install. The name should NOT include a
prefix or extension e.g. specify Ca to build libCa.a on Unix, Ca.lib,
CaObj.lib, or Ca.dll on WIN32

LIBRARY_<osclass> os specific libraries to build and install

LIBRARY_DEFAULT libraries to build and install for archs with no LIBRARY_<osclass>
specified

LIBRARY_IOC name of library to build and install for ioc type archs. The name should
NOT include a prefix or extension e.g. specify Ca to build libCa.a on
Unix, Ca.lib,CaObj.lib, or Ca.dll on WIN32

LIBRARY_IOC_<osclass> os specific libraries to build and install for ioc type archs

LIBRARY_IOC_DEFAULT libraries to build and install for ioc type arch systems with no
LIBRARY_IOC_<osclass> specified

LIBRARY_HOST name of library to build and install for host type archs. The name should
NOT include a prefix or extension, e.g. specify Ca to build libCa.a on
Unix, Ca.lib, CaObj.lib, or Ca.dll on WIN32

LIBRARY_HOST_<osclass> os class specific libraries to build and install for host type archs

LIBRARY_HOST_DEFAULT libraries to build and install for host type arch systems with no
LIBRARY_HOST_<osclass> specified

SHARED_LIBRARIES build shared libraries? Must be YES or NO

SHRLIB_VERSION shared library version number

Product and library source files

SRCS source files to build all PRODs and LIBRARYs

SRCS_<osclass> osclass specific source files to build all PRODs and LIBRARYs

SRCS_DEFAULT source file to build all PRODs and LIBRARYs for archs with no
SRCS_<osclass> specified

Build Option Description
44 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions
PROD_SRCS source files to build all PRODs

PROD_SRCS_<osclass> osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT source files needed to build PRODs for archs with no SRCS_<osclass>
specified

LIB_SRCS source files for building LIBRARY (e.g. LIB_SRCS=la.c lb.c lc.c)

LIB_SRCS_<osclass> os-specific library source files

LIB_SRCS_DEFAULT library source files for archs with no LIB_SRCS_<osclass> specified

<name>_SRCS source files to build a specific PROD or LIBRARY

<name>_SRCS_<osclass> os specific source files to build a specific PROD or LI|BRARY

<name>_SRCS_DEFAULT source files needed to build a specific PROD or LIBRARY for archs
with no <prod>_SRCS_<osclass> specified

Product and library object files

PROD_OBJS object files, without suffix, to build all PRODs

PROD_OBJS_<osclass> osclass specific object files, without suffix, to build all PRODs

PROD_OBJS_DEFAULT object files, without suffix, needed to build PRODs for archs with no
OBJS_<osclass> specified

LIB_OBJS object files, without suffix, for building LIBRARY (e.g. LIB_OBJS=la.c
lb.c lc.c)

LIB_OBJS_<osclass> os-specific library object files, without suffix,

LIB_OBJS_DEFAULT library object files, without suffix, for archs with no
LIB_OBJS_<osclass> specified

<name>_OBJS object files, without suffix, to build a specific PROD or LIBRARY

<name>_OBJS_<osclass> os specific object files, without suffix, to build a specific PROD or
LI|BRARY

<name>_OBJS_DEFAULT object files, without suffix, needed to build a specific PROD or
LIBRARY for archs with no <prod>_OBJS_<osclass> specified

Compiler flags

USR_CFLAGS C compiler flags for all systems

USR_CFLAGS_<osclass> os-specific C compiler flags

USR_CFLAGS_DEFAULT C compiler flages for archs with no USR_CFLAGS_<osclass> specified

<name>_CFLAGS file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

<name>_CFLAGS_<osclass> file specific C compiler flags for a specific os class

USR_CXXFLAGS C++ compiler flags for all systems (e.g. xyxMain_CFLAGS=-DSDDS)

USR_CXXFLAGS_<osclass> os-specific C++ compiler flags

Build Option Description
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 45

Chapter 4: EPICS Build Facility
Table of Makefile definitions
USR_CXXFLAGS_DEFAULT C++ compiler flags for systems with no USR_CXXFLAGS_<osclass>
specified

<name>_CXXFLAGS file specific C++ compiler flags

<name>_CXXFLAGS_<osclass> file specific C++ compiler flags for a specific osclass

USR_CPPFLAGS C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS_<osclass> os specific cpp flags

USR_CPPFLAGS_DEFAULT cpp flags for systems with no USR_CPPFLAGS_<osclass> specified

<name>_CPPFLAGS file specific C pre-processor flags
(e.g. xxxRecord_CPPFLAGS=-DDEBUG)

<name>_CPPFLAGS_<osclass> file specific cpp flags for a specific os class

USR_INCLUDES directories, with -I prefix, to search for include files
(e.g. -I$(EPICS_EXTENSIONS_INCLUDE))

USR_INCLUDES_<osclass> directories, with -I prefix, to search for include files for a specific os
class

USR_INCLUDES_DEFAULT directories, with -I prefix, to search for include files for systems with no
<name>_INCLUDES_<osclass> specified

<name>_INCLUDES directories, with -I prefix, to search for include files when building a
specific object file (e.g. -I$(MOTIF_INC))

<name>_INCLUDES_<osclass> file specific directories, with -I prefix, to search for include files for a
specific os class

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (default is NO)

CROSS_WARN C cross-compiler warning messages desired (YES or NO) (default NO)

<name>_WARN C cross-compiler warning messages desired for compile of <name>
(YES or NO) (default NO)

<name>_WARN_<osclass> C cross-compiler warning messages desired for compile of <name> for
specified <osclass> (YES or NO) (default NO)

<name>_WARN_<target_arch> C cross-compiler warning messages desired for compile of <name> for
specified target arch (YES or NO) (default NO)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_OPT Is cross-compiler optimization desired (YES or NO) (default is NO
optimization)

<name>_OPT compiler optimization desired for <name> (YES or NO) (default is NO)

<name>_OPT_<osclass> compiler optimization desired for <name> when compiled for the
specified <osclass> targets (YES or NO) (default is NO)

<name>_OPT_<target_arch> compiler optimization desired for <name> when compiled for the
specified target arch (YES or NO) (default is NO)

CMPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

Build Option Description
46 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions
Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS_<osclass> os specific linker options (for all makefile links)

USR_LDFLAGS_DEFAULT linker options for systems with no USR_LDFLAGS_<osclass>
specified

<name>_LDFLAGS prod or library specific linker options

<name>_LDFLAGS_<osclass> prod or library specific linker flags for a specific os class

USR_LIBS load libraries (e.g. -lXt -lX11) (for all makefile links)

USR_LIBS_<osclass> os specific load libraries (for all makefile links)

USR_LIBS_DEFAULT load libraries for systems with no USR_LIBS_<osclass> specified

<name>_LIBS prod or library specific ld libraries (e.g. probe_LIBS=X11 Xt)

<name>_LIBS_<osclass> os-specific libs needed to link a specific prod or library

<name>_LIBS_DEFAULT libs needed to link a specific prod or library for systems with no
<name>_LIBS_<osclass> specified

PROD_LIBS libs needed to link every PROD for all systems

PROD_LIBS_<osclass> os-specific libs needed to link every PROD

PROD_LIBS_DEFAULT libs needed to link every PROD for systems with no
PROD_LIBS_<osclass> specified

<lib>_DIR directory to search for the specified lib. (For libs listed in PROD_LIBS,
<prod>_LIBS and USR_LIBS)

SYS_PROD_LIBS system libs needed to link every PROD for all systems

SYS_PROD_LIBS_<osclass> os-specific system libs needed to link every PROD

SYS_PROD_LIBS_DEFAULT system libs needed to link every PROD for systems with no
SYS_PROD_LIBS_<osclass> specified

<prod>_SYS_LIBS prod specific system ld libraries (e.g. m)

<prod>_SYS_LIBS_<osclass> os class specific system libs needed to link a specific prod

<prod>_SYS_LIBS_DEFAULT system libs needed to link a specific prod for systems with no
SYS_PROD_LIBS_<osclass> specified

STATIC_BUILD Is static build desired (YES or NO) (default is NO)

Header files to be installed

INC list of include files to install into $(INSTALL_DIR)/include

INC_<osclass> os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

INC_DEFAULT include files to install where no INC_<osclass> is specified

Build Option Description
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 47

Chapter 4: EPICS Build Facility
Table of Makefile definitions
Perl, csh, tcl etc. script installation

SCRIPTS scripts to install for all systems

SCRIPTS_<osclass> os-specific scripts to install

SCRIPTS_DEFAULT scripts to install for systems with no SCRIPTS_<osclass> specified

SCRIPTS_IOC scripts to install for ioc type archs.

SCRIPTS_IOC_<osclass> os specific scripts to install for ioc type archs

SCRIPTS_IOC_DEFAULT scripts to install for ioc type arch systems with no
SCRIPTS_IOC_<osclass> specified

SCRIPTS_HOST scripts to install for host type archs. T

SCRIPTS_HOST_<osclass> os class specific scripts to install for host type archs

SCRIPTS_HOST_DEFAULT scripts to install for host type arch systems with no
OBJS_HOST_<osclass> specified

TCLLIBNAME list of tcl scripts to install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)

TCLINDEX name of tcl index file to create from TCLLIBNAME scripts

Object files
The names in the following OBJS definitions should NOT include a
suffix (.o or .obj).

OBJS object files to build and install for all system.

OBJS_<osclass> os-specific object files to build and install.

OBJS_DEFAULT object files to build and install for systems with no OBJS_<osclass>
specified..

OBJS_IOC object files to build and install for ioc type archs.

OBJS_IOC_<osclass> os specific object files to build and install for ioc type archs

OBJS_IOC_DEFAULT object files to build and install for ioc type arch systems with no
OBJS_IOC_<osclass> specified

OBJS_HOST object files to build and install for host type archs. T

OBJS_HOST_<osclass> os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT object files to build and install for host type arch systems with no
OBJS_HOST_<osclass> specified

Documentation

DOCS text files to be installed into the $(INSTALL_DIR)/doc directory

HTMLS_DIR name install Hypertext directory name i.e. $(INSTALL_DIR)/html/
$(HTMLS_DIR)

HTMLS hypertext files to be installed into the $(INSTALL_DIR)/html/
$(HTMLS_DIR) directory

Build Option Description
48 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions
TEMPLATES_DIR template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES template files to be installed into $(TEMPLATE_DIR)

Database Definition files

DBD Name of database definition file to be installed or created from bpt data
or dbd include and installed into $(INSTALL_DBD).

DBDINC Name, without suffix, of a menu or record database definition and
header to be installed or created and installed.

USR_DBDFLAGS Optional flags for dbExpand. Currently only include path (-I <path>)
and macro substitution (-S <substitution>) are supported.

Database Files

DB Name of a database file to be installed or created and installed into
$(INSTALL_DB).

Options for other programs

YACCOPT yacc options

LEXOPT lex options

SNCFLAGS state notation language, snc, options

<prod>_SNCFLAGS product specific state notation language options

E2DB_FLAGS e2db options

SCH2EDIF_FLAGS sch2edif options

RANLIBFLAGS ranlib options

Facilities for building Java programs

CLASSES names of Java classes to be built and installed

TESTCLASSES names of Java classes to be built

PACKAGE names of Java package to be installed

JAR name of Jar file to be built

JAR_INPUT names of files to be included in JAR

MANIFEST name of manifest file for JAR

Facilities for Windows 95/NT resource (.rc) files

RCS resource files (<name>.rc) needed to build every PROD

RCS_<osclass> resource files (<name>.rc) needed to build every PROD for ioc type
archs

RCS_DEFAULT resource files needed to build every PROD for ioc type arch systems
with no RCS_<osclass> specified

Build Option Description
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 49

Chapter 4: EPICS Build Facility
Configuration Files
4.6 Configuration Files

4.6.1 Base Configure Directory

The base/configure directory has the following directory structure:

base/
configure/

os/
tools/

4.6.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefiles.

CONFIG.CrossCommon
This file contains definitions for all hosts and all targets for a cross build (host different than target).

CONFIG.gnuCommon
This file contains definitions for all hosts and all targets for builds using the gnu compiler.

CONFIG_ADDONS
This file contains definitions which setup the variables that have <osclass> and DEFAULT options.

CONFIG_BASE
This file contains EPICS base specific definitions.

CONFIG_BASE_VERSION
This file contains definitions for the version number of EPICS base. This file is used for creating epicsVersion.h
which is installed into base/include.

<prod>_RCS resource files needed to build a specific PROD

<prod>_RCS_<osclass> os specific resource files to build a specific PROD

<prod>_RCS_DEFAULT resource files needed to build a specific PROD for ioc type arch systems
with no RCS_<osclass> specified

Other definitions:

USR_VPATH list of directories

BIN_INSTALLS files from specified directory to install into $(INSTALL_BIN) (e.g.
BIN_INSTALLS = $(EPICS_BASE_BIN)/aiRecord$(OBJ))

BIN_INSTALLS_<osclass> os specific files from specified directory to install only for ioc type archs

BIN_INSTALLS_DEFAULT files from specified directory to install for ioc type arch systems with no
OBJS_IOC_<osclass> specified

TARGETS files to create but not install

INSTALL_LOCATION installation directory (defaults to $(TOP))

Build Option Description
50 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Configuration Files
CONFIG_COMMON
This file contains definitions common to all builds.

CONFIG_ENV
This file contains default definitions of the EPICS environment variables. This file is used for creating envData.c
which is included in the Com library.

CONFIG_SITE
This is the file in which you add to or modify make variables in EPICS base. A definition normally overridden is:

CROSS_COMPILER_TARGET_ARCHS =
CONFIG_SITE_ENV

This file contains defaults for site specific definitions of EPICS environment variables. This file is used for creating
envData.c which is included in the Com library.

CONFIG
This is the file which contains include statements for all the other configure files. You can override any definitions
by putting override definitions at the end of this file.

RELEASE
This file specifies the location of external products such as Tornado II and external <tops> such as EPICS base.

RULES
This file just includes the appropriate rules configuration file.

RULES.Db
This file contains rules for building and installing database and database definition files. Databases generated from
templates and/or CapFast schematics are supported.

RULES_ARCHS
This file contains definitions and rules which allow building the make target for each target architecture.

RULES_BUILD
This is a file containing the build rules for the Makefiles

RULES_DIRS
This file contains definitions and rules which allow building the make targets in each subdirectory. This file is
included by Makefiles in directories with subdirectories to be built.

RULES_JAVA
This file contains definitions and rules which allow building java class files and java jar files.

RULES_TOP
This file contains the rules specific to a <top> level directory e.g. uninstall and tar. It also includes the
RULES_DIRS file.

4.6.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory is
CONFIG.<host>.<target> where <host> is either the arch for the host system or Common which means all arch
combinations and <target> is either the arch for the build target system or Common for all build target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all host
systems when building for a vxWorks-pentium target system.

Also, if a group of host or target files have the same make definitions these common definitions can be moved to a new file
which is then included in each host or target file. An example of this is all Unix hosts which have common definitions in a
CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksCommon.

4.6.4 Base configure/tool File Descriptions

The configure/tools directory contains Perl script tools used for the build. The tools currently in this directory are:

convertRelease.pl
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 51

Chapter 4: EPICS Build Facility
Configuration Files
This Perl script does consistency checks for the external <top> definitions in the RELEASE file and generates
include directory, bin directory, and library directory definitions for these external <top>s. These definitions are
included into the CONFIG file for use by the application Makefiles.This script also creates -include statements for
RULES_BUILD files from the external <top> definitions in the RELEASE file.

cp.pl
This Perl script copies an existing file.

installEpics.pl
This is a Perl script that installs build created files into the install directories.

makeDependsTargets.pl
This is a perl script that creates a target definition for each header file dependancy definition.

makeMakefile.pl
This is a perl script that creates a Makefile in the created O.<arch> directories.

makeMakefileInclude.pl
This perl script creates a file to be included by Makefiles. This file contains a build target's specific definitions and
dependencies.

mkdir.pl
This perl script creates a directory like the Unix mkdir command.

mkmf.pl
This perl script generates include file dependencies for targets from source file include statements.

munch.pl
This is a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constructors
and destructors. See munching in the vxWorks documentation for more information.

mv.pl
This perl script renames an existing file.

replaceVAR.pl
This is a perl script that changes VAR(xxx) style macros in CapFast generated databases into the $(xxx) notation
used in EPICS databases.

rm.pl
This perl script quietly removes an existing file.
52 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And
Processing

5.1 Overview
Before describing particular components of the IOC software, it is helpful to give an overview of three closely related
topics: Database locking, scanning, and processing. Locking is done to prevent two different tasks from simultaneously
modifying related database records. Database scanning is the mechanism for deciding when records should be processed.
The basics of record processing involves obtaining the current value of input fields and outputting the current value of
output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also causes
considerable complication. Thus, before discussing locking, scanning, and processing, record links are described.

5.2 Record Links
A database record may contain links to other records. Each link is one of the following types:

• INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:

• constant link
Not discussed in this chapter

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC. It is accessed via a special IOC client task. It is also possible to force a
link to be a channel access link even it references a record in the same IOC.

• hardware link
Not discussed in this chapter

• FWDLINK
A forward link refers to a record that should be processed whenever the record containing the forward link is
processed. The following types are supported:

• constant link
Ignored.

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC or a link forced to be a channel access link. Unless the link references the
PROC field it is ignored. If it does reference the PROC field a channel access put with a value of 1 is issued.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 53

Chapter 5: Database Locking, Scanning, And Processing
Database Links
Links are defined in file link.h.

NOTE: This chapter discusses mainly database links.

5.3 Database Links
Database links are referenced by calling one of the following routines:

• dbGetLink: The value of the field referenced by the input link retrieved.

• dbPutLink: The value of the field referenced by the output link is changed.

• dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed when the record
containing the link is processed. For input and output links, however, two other attributes can be specified by the
application developer, process passive and maximize severity.

5.3.1 Process Passive

Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record should be processed before
getting a value from an input link or after writing a value to an output link. The linked record will be processed, via a call
to dbProcess, only if the record is a passive record and process passive is TRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handled like a
Channel Access Link. See last section of this chapter for details.

5.3.2 Maximize Severity

Maximize severity (MS or NMS), is TRUE or FALSE. It determines if alarm severity is propagated across links. For input
links the alarm severity of the record referred to by the link is propagated to the record containing the link. For output
links the alarm severity of the record containing the link is propagated to the record referred to by the link. In either case,
if the severity is changed, the alarm status is set to LINK_ALARM.

The method of determining if the alarm status and severity should be changed is called ”maximize severity”. In addition
to its actual status and severity, each record also has a new status and severity. The new status and severity are initially 0,
which means NO_ALARM. Every time a software component wants to modify the status and severity, it first checks the
new severity and only makes a change if the severity it wants to set is greater than the current new severity. If it does make
a change, it changes the new status and new severity, not the current status and severity. When database monitors are
checked, which is normally done by a record processing routine, the current status and severity are set equal to the new
values and the new values reset to zero. The end result is that the current alarm status and severity reflect the highest
severity outstanding alarm. If multiple alarms of the same severity are present the status reflects the first one detected.

5.4 Database Locking
The purpose of database locking is to prevent a record from being processed simultaneously by two different tasks. In
addition, it prevents ”outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
54 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Database Scanning
dbScanUnlock(precord);

The basic idea is to call dbScanLock before accessing database records and calling dbScanUnlock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification to other
records. Records linked together are placed in the same lock set. dbScanLock locks the entire lock set not just the record
requested. dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a record and unlock afterwards.

All records linked via OUTLINKs and FWDLINKs are placed in the same lock set. Records linked via INLINKs with
process_passive or maximize_severity TRUE are also forced to be in the same lock set.

5.5 Database Scanning
Database scanning refers to requests that database records be processed. Four types of scanning are possible:

1. Periodic - Records are scanned at regular intervals.

2. I/O event - A record is scanned as the result of an I/O interrupt.

3. Event - A record is scanned as the result of any task issuing a post_event request.

4. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

• dbScanPassive: Only record processing routines, dbGetLink, dbPutLink, and dbPutField call
dbScanPassive. Record processing routines call it for each forward link in the record.

• dbPutField: This routine changes the specified field and then, if the field has been declared process_passive,
calls dbScanPassive. Each field of each record type has the attribute process_passive declared TRUE or
FALSE in the definition file. This attribute is a global property, i.e. the application developer has no control of it.
This use of process_passive is used only by dbPutField. If dbPutField finds the record already active
(this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be processed
again, when the current processing completes.

• dbGetLink: If the link specifies process passive, this routine calls dbScanPassive. Whether or not
dbScanPassive is called, it then obtains the specified value.

• dbPutLink: This routine changes the specified field. Then, if the link specifies process passive, it calls
dbScanPassive. dbPutLink is only called from record processing routines. Note that this usage of
process_passive is under the control of the application developer. If dbPutLink finds the record already
active because of a dbPutField directed to this record then it arranges for the record to be processed again,
when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call dbGetField to obtain database values.
dbGetField just reads values without asking that a record be processed.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 55

Chapter 5: Database Locking, Scanning, And Processing
Record Processing
5.6 Record Processing
A record is processed as a result of a call to dbProcess. Each record support module must supply a routine process.
This routine does most of the work related to record processing. Since the details of record processing are record type
specific this topic is discussed in greater detail in Chapter "Record Support" for details.

5.7 Guidelines for Creating Database Links
The ability to link records together is an extremely powerful feature of the IOC software. In order to use links properly it
is important that the Application Developer understand how they are processed. As an introduction consider the following
example :

Assume that A, B, and C are all passive records. The notation states that A has a forward link to B and B to C. C has an
input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of events
occurs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C starts processing. One of the first steps is to get a value from A via the input link.

4. At this point a question occurs. Note that the input link specifies process passive (signified by the PP after
InLink). But process passive states that A should be processed before the value is retrieved. Are we in an infinite
loop? The answer is no. Every record contains a field pact (processing active), which is set TRUE when record
processing begins and is not set FALSE until all processing completes. When C is processed A still has pact TRUE
and will not be processed again.

5. C obtains the value from A and completes its processing. Control returns to B.

6. B completes returning control to A

7. A completes processing.

This brief example demonstrates that database links needs more discussion.

5.7.1 Rules Relating to Database Links

5.7.1.1 Processing Order

The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example the following records are
processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

2. If a record has multiple input links (calculation and select records) the input is obtained in the natural order. For
example if the fields are named INPA, INPB, ..., INPL, then the links are read in the order A then B then C, etc.
Thus if obtaining an input results in a record being processed, the processing order is guaranteed.

InLink PP

A FwdLink B FwdLink C
56 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links
3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed in the
same lock set. When dbScanLock is called the entire set, not just the specified record, is locked. This prevents two
different tasks from simultaneously modifying records in the same lock set.

5.7.1.3 PACT - processing active

Each record contains a field pact. This field is set TRUE at the beginning of record processing and is not set FALSE until
the record is completely processed. In particular no links are processed with pact FALSE. This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the next two
sections that pact has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can specify
process passive TRUE (PP) or process passive FALSE (NPP). Consider the following example

Assume that all records except fanout are passive. When the fanout record is processed the following sequence of events
occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It calls dbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

4. A is processed, the data value fetched, and control is returned to B

5. B completes processing and control is returned to fanout. Fanout asks that C be processed.

6. C begins processing. It calls dbGetLink to obtain data from A.

7. Because the input link has process passive TRUE, a request is made to process A.

8. A is processed, the data value fetched, and control is returned to C.

9. C completes processing and returns to fanout

FLNK1 FLNK2

FLNK3 FLNK4

fanout

BFwdLink

FwdLink

fanout

InLink PP

InLink PP

A

C

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 57

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records
10. The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no process passive then A will only
be processed once. Thus we should have .

5.7.1.5 Process Passive: Field attribute

Each field of each database record type has an attribute called process_passive. This attribute is specified in the
record definition file. It is not under the control of the application developer. This attribute is used only by dbPutField.
It determines if a passive record will be processed after dbPutField changes a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can specify
maximize severity TRUE (MS) or maximize severity FALSE (NMS).

When database input or output links are defined, the application developer can specify if alarm severities should be
propagated across links. For input links the severity is propagated from the record referred to by the link to the record
containing the link. For output links the severity of the record containing the link is propagated to the record referenced by
the link. The alarm severity is transferred only if the new severity will be greater than the current severity. If the severity is
propagated the alarm status is set equal to LINK_ALARM.

5.8 Guidelines for Synchronous Records
A synchronous record is a record that can be completely processed without waiting. Thus the application developer never
needs to consider the possibility of delays when he defines a set of related records. The only consideration is deciding
when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process a record and for
enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.

2. For each periodic group and for each Event group the phase field can be used to specify processing order.

3. The application programmer has no control over the record processing order of records in different groups.

4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed. By letting the
SDIS field of an entire set of records refer to the same input record, the entire set can be enabled or disabled
simultaneously. See the Record Reference Manual for details.

BFwdLink

FwdLink

fanout

InLink NPP

InLink PP

A

C

58 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records
5. A record (periodic or other) can be the root of a set of passive records that will all be processed whenever the root
record is processed. The set is formed by input, output, and forward links.

6. The process_passive option specified for each field of each record determines if a passive record is processed
when a dbPutField is directed to the field. The application developer must be aware of the possibility of record
processing being triggered by external sources if dbPutFields are directed to fields that have
process_passive TRUE.

7. The process_passive option for input and output links provides the application developer control over how a
set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining arbitrary
structures without carefully analyzing the processing order.

5.9 Guidelines for Asynchronous Records
The previous discussion does not allow for asynchronous records. An example is a GPIB input record. When the record is
processed the GPIB request is started and the processing routine returns. Processing, however, is not really complete until
the GPIB request completes. This is handled via an asynchronous completion routine. Lets state a few attributes of
asynchronous record processing.

During the initial processing for all asynchronous records the following is done:

1. pact is set TRUE

2. Data is obtained for all input links

3. Record processing is started

4. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

5. Record processing continues

6. Record specific alarm conditions are checked

7. Monitors are raised

8. Forward links are processed

9. pact is set FALSE.

A few attributes of the above rules are:

10. Asynchronous record processing does not delay the scanners.

11. Between the time record processing begins and the asynchronous completion routine completes, no attempt will be
made to again process the record. This is because pact is TRUE. The routine dbProcess checks pact and does
not call the record processing routine if it is TRUE. Note, however, that if dbProcess finds the record active 10
times in succession, it raises a SCAN_ALARM.

12. Forward and output links are triggered only when the asynchronous completion routine completes record
processing.

With these rules the following works just fine:

dbScanPasive BASYN
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 59

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records
When dbProcess is called for record ASYN, processing will be started but dbScanPassive will not be called. Until
the asynchronous completion routine executes any additional attempts to process ASYN are ignored. When the
asynchronous callback is invoked the dbScanPassive is performed.

Problems still remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

Assume both A and B are asynchronous passive records and a request is made to process A. The following sequence of
events occur.

1. A starts record processing and returns leaving pact TRUE.

2. Sometime later the record completion for A occurs. During record completion a request is made to process B. B
starts processing and control returns to A which completes leaving its pact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request is made to process A. A
starts processing and control returns to B which completes leaving its pact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application developer to prevent such loops.

5.9.2 Obtain Old Data

A dbGetLink to a passive asynchronous record can get old data.

If A is a passive asynchronous record then the dbGetLink request forces dbProcess to be called for A. dbProcess
starts the processing and returns. dbGetLink then reads the desired value which is still old because processing will only
be completed at a later time.

5.9.3 Delays

Consider the following:

The second ASYN record will not begin processing until the first completes, etc. This is not really a problem except that
the application developer must be aware of delays caused by asynchronous records. Again, note that scanners are not
delayed, only records downstream of asynchronous records.

dbScanPasive
B

dbScanPasive
A

dbGetLink BA

dbScanPasiveASYN dbScanPasiveASYN . . .
60 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Cached Puts
5.9.4 Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous processing routine completes what
happens? If the asynchronous routine completes before the watch dog task runs everything is okay. If it doesn’t? This is a
more general question of the consequences of having the watchdog timer restart a scan task. EPICS currently does not
allow scanners to be automatically restarted.

5.10 Cached Puts
The rules followed by dbPutLink and dbPutField provide for ”cached” puts. This is necessary because of
asynchronous records. Two cases arise.

The first results from a dbPutField, which is a put coming from outside the database, i.e. Channel Access puts. If this
is directed to a record that already has pact TRUE because the record started processing but asynchronous completion
has not yet occurred, then a value is written to the record but nothing will be done with the value until the record is again
processed. In order to make this happen dbPutField arranges to have the record reprocessed when the record finally
completes processing.

The second case results from dbPutLink finding a record already active because of a dbPutField directed to the
record. In this case dbPutLink arranges to have the record reprocessed when the record finally completes processing.
Note that it could already be active because it appears twice in a chain of record processing. In this case it is not
reprocessed because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, each new
value is placed in the record but it will still only be processed once, i.e. last value wins.

5.11 Channel Access Links
A channel access link is:

1. A record link that references a record in a different IOC.

2. A link that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all I/O for channel access links. It does the following:

At IOC initialization dbCa issues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. It uses ca_field_type and ca_element_count when
it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new data is stored in a
buffer belonging to dbCa. When iocCore or the record support module asks for data the data is taken from the buffer and
converted to the requested type.

For each output link, a buffer is allocated the first time iocCore/record support issues a put and a channel access
connection has been made. This buffer is allocated according to ca_field_type and ca_element_count. Each
time iocCore/record support issues a put, the data is converted and placed in the buffer and a request is made to dbCa to
issue a new ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act like a channel access link. In particular
the records will not be forced to be in the same lock set. As an example consider a scan record that links to a set of
unrelated records, each of which can cause a lot of records to be processed. It is often NOT desirable to force all these
records into the same lock set. Forcing the links to be handled as channel access links solves the problem.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 61

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links
Because channel access links imply network activity, they are fundamentally different than database links. For this reason
and because channel access does not understand process passive or maximize severity, the semantics of channel access
links are not the same as database links. Let’s discuss the channel access semantics of INLINK, OUTLINK, and
FWDLINK separately.

5.11.1 INLINK

The options for process passive are:

• PP or NPP - This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP, thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

• CP - Force the link to be a channel access link and also request that the record containing the link be processed
whenever a monitor occurs.

• CPP - Force the link to be a channel access link and also request that the record containing the link, if it is passive,
be processed whenever a monitor occurs.

Maximize Severity is honored.

5.11.2 OUTLINK

The options for process passive are:

• PP or NPP - This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.

5.11.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca_put with a
value of 1 is written each time a forward link request is issued.

The options for process passive are:

• PP or NPP - This link is made a channel access link because the referenced record is not found in the local IOC. It
is not possible to honor PP thus it always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.
62 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition

6.1 Overview
This chapter describes database definitions. The following definitions are described:

• Menu

• Record Type

• Device

• Driver

• Breakpoint Table

• Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should never
contain any of the other definitions and vise-versa. Thus the following convention is followed:

• Database Definition File - A file that contains any type of definition except record instances.

• Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each other via include files.

6.2 Brief Summary of Database Definition Syntax
path "path"
addpath "path"
include "filename"
#comment
menu(name) {

include "filename"
choice(choice_name,"choice_value")
...

}

recordtype(record_type) {
include "filename"
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 63

Chapter 6: Database Definition
General Rules for Database Definition
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}
...

}

device(record_type,link_type,dset_name,”choice_string”)
...

driver(drvet_name)
 ...

breaktable(name) {
raw_value, eng_value,
...

}

#The Following defines a Record Instance

record(record_type,record_name) {
include "filename"
field(field_name,"value")
...

}
#NOTE: GDCT uses grecord instead of record

6.3 General Rules for Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord
64 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
General Rules for Database Definition
6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string
consisting of only the following characters does not have to be quoted:

a-z A-Z 0-9 _ - : . [] < > ;

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character ". The quote character itself can given by using
\ as an escape. For example "\"" is a quoted string containing the single character ".

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

6.3.5 Escape Sequences

Except for \" the database routines never translate standard C escape sequences, however, dbTranslateEscape can
be used to translate the standard C escape sequences:

\a \b \f \n \r \t \v \\ \? \’ \" \000 \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of 1 or 2 digits) A typical use
is device support which expects escape sequences in the parm field:

The routine is:

int dbTranslateEscape(char *s,const char *ct);
/*
 * copies ct to s while substituting escape sequences
 * returns the length of the resultant string
 * The result may contain 0 characters
*/

6.3.6 Define before referencing

No item can be referenced until it is defined. For example a recordtype menu field can not reference a menu unless
that menu definition has already been defined. Another example is that a record instance can not appear until the
associated record type has been defined.

6.3.7 Multiple Definitions

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once, then only the first instance
is used. Record instance definitions are cumulative, i.e. each time a new field value is encountered it replaces the previous
value.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 65

Chapter 6: Database Definition
Menu
6.3.8 filename extension

By convention:

• Record instances files have the extension ".db"

• Database definition files have the extension ".dbd".

6.3.9 path addpath

The path follows the standard Unix convention, i.e. it is a list of directory names separated by colons (Unix) or semicolons
(winXX).

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is ; instead of :

The path command specifies the current path. The addpath appends directory names to the current path. The path is
used to locate the initial database file and included files. An empty dir at the beginning, middle, or end of a non-empty
path string means the current directory. For example:

 nnn::mmm # Current directory is between nnn and mmm
 :nnn # Current directory is first
 nnn: # Current directory is last

Utilities which load database files (dbExpand, dbLoadDatabase, etc.) allow the user to specify an initial path. The
path and addpath commands can be used to change or extend the initial path.

The initial path is determined as follows:

If an initial path is specified, it is used. Else:
If the environment variable EPICS_DB_INCLUDE_PATH is defined, it is used. Else:
the default path is ".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the specified file is used.

6.3.10 include

Format:

include "filename"

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.3.11 comment

The comment symbol is "#". Whenever the comment symbol appears, it and all characters through the end of the line are
ignored.

6.4 Menu
Format:
66 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Type
menu(name) {
choice(choice_name,"choice_value")
...

}

Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only
the first is used.
choice_name - The name placed in the enum generated by dbToMenuH or dbToRecordtypeH
choice_value - The value associated with the choice.

Example:

menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")

}

6.5 Record Type

6.5.1 Format:
recordtype(record_type) {

field(field_name,field_type) {
asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

}
...

}

6.5.2 rules
• asl - Access Security Level. The default is ASL1. Access Security is discussed in a later chapter. Only two values

are permitted for this field (ASL0 and ASL1). Fields which operators normally change are assigned ASL0. Other
fields are assigned ASL1. For example, the VAL field of an analog output record is assigned ASL0 and all other
fields ASL1. This is because only the VAL field should be modified during normal operations.

• initial - Initial Value.

• promptgroup - Prompt group to which field belongs. This is for use by Database Configuration Tools. This is
defined only for fields that can be given values by database configuration tools. File guigroup.h contains all
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 67

Chapter 6: Database Definition
Record Type
possible definitions. The different groups allow database configuration tools to present the user with groups of
fields rather than all prompt fields. I don’t know of any tool that currently uses groups.

• prompt - A prompt string for database configuration tools. Optional if promptgroup is not defined.

• special - If specified, then special processing is required for this field at run time.

• pp - Should a passive record be processed when Channel Access writes to this field? The default is NO.

• interest - Only used by the dbpr shell command.

• base - For integer fields, a base of DECIMAL or HEX can be specified. The default is DECIMAL.

• size - Must be specified for DBF_STRING fields.

• extra - Must be specified for DBF_NOACCESS fields.

• menu - Must be specified for DBF_MENU fields. It is the name of the associated menu.

6.5.3 definitions
• record_type - The unique name of the record type. If duplicates are specified, only the first definition is used.

• field_name - The field name. Only alphanumeric characters are allowed. When include files are generated, the field
name is converted to lower case. Previous versions of EPICS required that field name be a maximum of four
characters. Although this restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

• field_type - This must be one of the following values:

• DBF_STRING

• DBF_CHAR

• DBF_UCHAR

• DBF_SHORT

• DBF_USHORT

• DBF_LONG

• DBF_ULONG

• DBF_FLOAT

• DBF_DOUBLE

• DBF_ENUM

• DBF_MENU

• DBF_DEVICE

• DBF_INLINK

• DBF_OUTLINK

• DBF_FWDLINK

• DBF_NOACCESS

• asl_level - This must be one of the following values:

• ASL0

• ASL1 (default value)

• init_value - A legal value for data type.

• prompt_value - A prompt value for database configuration tools.

• gui_group - This must be one of the following:

• GUI_COMMON

• GUI_ALARMS

• GUI_BITS1

• GUI_BITS2

• GUI_CALC
68 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Type
• GUI_CLOCK

• GUI_COMPRESS

• GUI_CONVERT

• GUI_DISPLAY

• GUI_HIST

• GUI_INPUTS

• GUI_LINKS

• GUI_MBB

• GUI_MOTOR

• GUI_OUTPUT

• GUI_PID

• GUI_PULSE

• GUI_SELECT

• GUI_SEQ1

• GUI_SEQ2

• GUI_SEQ3

• GUI_SUB

• GUI_TIMER

• GUI_WAVE

• GUI_SCAN
NOTE: GUI types were invented with the intention of allowing database configuration tools to prompt for
groups of fields and when a user selects a group the fields within the group. This feature has never been used
and a result is that many record types have not assigned the correct GUI groups to each field.

• special_value must be one of the following:

• An integer value greater than 103. In this case, the record support special routine is called whenever the field
is modified by database access. This feature is present only for compatibility. New support modules should
use SPC_MOD.

The following value disallows access to field.

• SPC_NOMOD - This means that field can not be modified at runtime except by the record/device support
modules for the record type.

The following values are used for database common. They must NOT be used for record specific fields.

• SPC_SCAN - Scan related field.

• SPC_ALARMACK - Alarm acknowledgment field.

• SPC_AS - Access security field.

The following value is used if record support wants to trap dbNameToAddr calls.

• SPC_DBADDR - This is set if the record support cvt_dbaddr routine should be called whenever
dbNameToAddr is called, i.e. when code outside record/device support want to access the field.

The following values all result in the record support special routine being called whenever database access
modifies the field. The only reason for multiple values is that originally it seemed like a good idea. New
support modules should only use SPC_MOD.

• SPC_MOD - Notify when modified, i.e. call the record support special routine whenever the field is modified
by database access.

• SPC_RESET - a reset field is being modified.

• SPC_LINCONV - A linear conversion field is being modified.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 69

Chapter 6: Database Definition
Record Type
• SPC_CALC - A calc field is being modified.

• pp_value - Should a passive record be processed when Channel Access writes to this field? The allowed values
are:

• NO (default)

• YES

• interest_level - An interest level for the dbpr command.

• base - For integer type fields, the default base. The legal values are:

• DECIMAL (Default)

• HEX

• size_value - The number of characters for a DBF_STRING field.

• extra_info - For DBF_NOACCESS fields, this is the C language definition for the field. The definition must end
with the fieldname in lower case.

6.5.4 Example

The following is the definition of the binary input record.

recordtype(bi) {
include "dbCommon.dbd"
field(INP,DBF_INLINK) {

prompt("Input Specification")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(VAL,DBF_ENUM) {

prompt("Current Value")
asl(ASL0)
pp(TRUE)

}
field(ZSV,DBF_MENU) {

prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(OSV,DBF_MENU) {

prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(COSV,DBF_MENU) {

prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

70 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Type
field(ZNAM,DBF_STRING) {
prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}
field(ONAM,DBF_STRING) {

prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}
field(RVAL,DBF_ULONG) {

prompt("Raw Value")
pp(TRUE)

}
field(ORAW,DBF_ULONG) {

prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}
field(MASK,DBF_ULONG) {

prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}
field(LALM,DBF_USHORT) {

prompt("Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}
field(MLST,DBF_USHORT) {

prompt("Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}
field(SIOL,DBF_INLINK) {

prompt("Sim Input Specifctn")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SVAL,DBF_USHORT) {

prompt("Simulation Value")
}
field(SIML,DBF_INLINK) {

prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 71

Chapter 6: Database Definition
Device
field(SIMM,DBF_MENU) {
prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}
field(SIMS,DBF_MENU) {

prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)
interest(2)
menu(menuAlarmSevr)

}
}

6.6 Device

6.6.1 Format:
device(record_type,link_type,dset_name,”choice_string”)

...

6.6.2 definitions
• record_type - Record type. The combination of record_type and choice_string must be unique. If the

same combination appears multiple times, the first definition is used.

• link_type - Link type. This must be one of the following:

• CONSTANT

• PV_LINK

• VME_IO

• CAMAC_IO

• AB_IO

• GPIB_IO

• BITBUS_IO

• INST_IO

• BBGPIB_IO

• RF_IO

• VXI_IO

• dset_name - The exact name of the device support entry table without the trailing "DSET". Duplicates are not
allowed.

• choice_string Choice string for database configuration tools. Note that it must be enclosed in "". Note that for a
given record type, each choice_string must be unique.

6.6.3 Examples
device(ai,CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")
72 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Driver
6.7 Driver

6.7.1 Format:
driver(drvet_name)

6.7.2 Definitions
• drvet_name - If duplicates are defined, only the first is used.

6.7.3 Examples
driver(drvVxi)
driver(drvXy210)

6.8 Breakpoint Table

6.8.1 Format:
breaktable(name) {

raw_value, eng_value,
...

}

6.8.2 Definitions
• name - Name, which must be alpha-numeric, of the breakpoint table. If duplicates are specified the first is used.

• raw_value - The raw value, i.e. the actual ADC value associated with the beginning of the interval.

• eng_value - The engineering value associated with the beginning of the interval.

6.8.3 Example
breaktable(typeJdegC) {
 0.000000 0.000000
 365.023224 67.000000
 1000.046448 178.000000
 3007.255859 524.000000
 3543.383789 613.000000
 4042.988281 692.000000
 4101.488281 701.000000
}

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 73

Chapter 6: Database Definition
Record Instance
6.9 Record Instance

6.9.1 Format:
record(record_type,record_name) {

field(field_name,"value")
...

}

6.9.2 definitions
• record_type - The record type.

• record_name - The record name. This must be composed of the following characters:
 a-z A-Z 0-9 _ - : [] < > ;
 NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for each field is the value assigned to
the field.

• field_name - The field name

• value - Depends on field type.

• DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.

• DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG, DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. a leading 0 means the
value is given in octal and a leading 0x means that value is given in hex.

• DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number.

• DBF_MENU
The string must be one of the valid choices for the associated menu.

• DBF_DEVICE
The string must be one of the valid device choice strings.

• DBF_INLINK, DBF_OUTLINK
NOTES:

• In the field is INP or OUT then it is associated with field DTYP. Other DBF_INLINK and
DBF_OUTLINK fields can be either CONSTANT or PV_LINKs

• DTYP must be defined before the associated INP or OUT field.
• Choosing the DTYP implicitly chooses a bus type.
• A DTYP of CONSTANT can be either a constant or a PV_LINK.

The allowed value depends on the bus type as follows:
• CONSTANT

A constant valid for the field associated
• PV_LINK

A value of the form:

 record.field process maximize

field, process, and maximize are optional.
The default value for field is VAL.
process can have one of the following values:
74 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Instance
• NPP - No Process Passive (Default)
• PP - Process Passive
• CA - Force link to be a channel access link
• CP - CA and process on monitor
• CPP - CA and process on monitor if record is passive

NOTES:
CP and CPP are valid only for INLINKs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel access link it must reference the
PROC field.

maximize can have one of the following values
• NMS - No Maximize Severity (Default)
• MS - Maximize severity

• VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
 This field is optional and is device specific.

• CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch, crate, station, subaddress, and function should be obvious to camac users.
Subaddress and function are optional (0 if not given). Parm is also optional and is device
dependent (25 characters max).

• AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char max)

• GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)

• BITBUS_IO
#Llink Nnode Pport Ssignal @parm
link - link, i.e. vme bitbus interface.
node - bitbus node
port - port on the node
signal - signal on port
parm - device specific character string(31 char max)

• INST_IO
@parm
parm - Device dependent character string(35 char max)

• BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address
parm - optional device dependent character string(31 char max)

• RF_IO
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 75

Chapter 6: Database Definition
Record Instance
#Rcryo Mmicro Ddataset Eelement
• VXI_IO

#Vframe Cslot Ssignal @parm (Dynamic addressing)
 or
#Vla Signal @parm (Static Addressing)
frame - VXI frame number
slot - Slot within VXI frame
la - Logical Address
signal - Signal Number
parm - device specific character string(25 char max)

• DBF_FWDLINK
This is either not defined or else is a PV_LINK. See above for definitions.

6.9.3 Examples
record(ai,STS_AbAiMaS0) {

field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4to20MA")
field(INP,"#L0 A2 C0 S0 F0 @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")
field(LOPR,"4")

}
record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-1771OFE")
field(OUT,"#L0 A2 C1 S0 F0 @")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmp")
field(DRVH,"20")
field(DRVL,"4")
field(HOPR,"20")
field(LOPR,"4")

}
record(bi,STS_AbDiA0C0S0) {

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0 A0 C0 S0 F0 @")
field(ZNAM,"Off")
field(ONAM,"On")

}

76 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Attribute
6.10 Record Attribute
Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can be accessed via database
and channel access. An attribute is given a name the acts like a field name which has the same value for every instance of
the record type. Two attributes are generated automatically for each record type: RTYP and VERS. The value for RTYP is
the record type name. The default value for VERS is "none specified", which can be changed by record support. Record
support can call the following routine to create new attributes or change existing attributes:

long dbPutAttribute(char *recordTypename,
 char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

6.11 Breakpoint Tables - Discussion
The menu menuConvert is used for field LINR of the ai and ao records. These records allow raw data to be converted
to/from engineering units via one of the following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversion and linear conversion. The
remaining choices are assumed to be the names of breakpoint tables. If a breakpoint table is chosen, the record support
modules calls cvtRawToEngBpt or cvtEngToRawBpt. You can look at the ai and ao record support modules for
details.

If a user wants to add additional breakpoint tables, then the following should be done:

• Copy the menuConvert.dbd file from EPICS base/src/bpt

• Add definitions for new breakpoint tables to the end

• Make sure modified menuConvert.dbd is loaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned that the
Allen Bradley IXE device support misuses the LINR field. If you use this module, it is very important that you do not
change any of the EPICS supplied definitions in menuConvert.dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the IOC before iocInit is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is desirable to create a breakpoint
table from a table of raw values representing equally spaced engineering units. A good example is the Thermocouple
tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A tool makeBpt is provided to convert
such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engineering
values is:

!comment line
<header line>
<data table>
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 77

Chapter 6: Database Definition
Menu and Record Type Include File Generation.
The header line contains the following information:

• Name: An alphanumeric ascii string specifying the breakpoint table name

• Low Value Eng: Engineering Units Value for first breakpoint table entry

• Low Value Raw: Raw value for first breakpoint table entry

• High Value Eng: Engineering Units: Highest Value desired

• High Value Raw: Raw Value for High Value Eng

• Error: Allowed error (Engineering Units)

• First Table: Engineering units corresponding to first data table entry

• Last Table: Engineering units corresponding to last data table entry

• Delta Table: Change in engineering units per data table entry

 An example definition is:

”TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing

makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input filename with the extension of
dbd.

Another way to create the breakpoint table is to include the following definition in a Makefile.Vx:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoint table
bpt<name>.dbd.

6.12 Menu and Record Type Include File Generation.

6.12.1 Introduction

Given a file containing menus, dbToMenuH generates an include file that can be used by any code which uses the
associated menus. Given a file containing any combination of menu definitions and record type definitions,
dbToRecordtypeH generates an include file that can be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating local record
types are encouraged to do likewise.

• Each menu that is either for fields in database common (for example menuScan) or is of global use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an extension of
dbd. The name of the generated include file is the menu name with an extension of h. Thus menuScan is defined
in a file menuScan.dbd and the generated include file is named menuScan.h

• Each record type definition is defined in a separate file. In addition, this file contains any menu definitions that are
used only by that record type. The name of the file is the same as the recordtype name followed by Record.dbd.
The name of the generated include file is the same name with an extension of h. Thus aoRecord is defined in a
file aoRecord.dbd and the generated include file is named aoRecord.h. Since aoRecord has a private menu
called aoOIF, the dbd file and the generated include file have definitions for this menu. Thus for each record type,
there are two source files (xxxRecord.dbd and xxxRecord.c) and one generated file (xxxRecord.h).
78 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Menu and Record Type Include File Generation.
Before continuing, it should be mentioned that Application Developers don’t have to execute dbToMenuH or
dbToRecordtypeH. If a developer uses the proper naming conventions, it is only necessary to add definitions to their
Makefile. Consult the chapter on the EPICS Build Facility for details..

6.12.2 dbToMenuH

This tool is executed as follows:

dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple -I options can be
specified for an include path and multiple -S options for macro substitution.

For example menuPriority.dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include file, menuPriority.h, generated by dbToMenuH contains:

#ifndef INCmenuPriorityH
#define INCmenuPriorityH
typedef enum {

menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}menuPriority;
#endif /*INCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

6.12.3 dbToRecordtypeH

This tool is executed as follows:

dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple -I options can be
specified for an include path and multiple -S options for macro substitution.

For example aoRecord.dbd, which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental")

}
recordtype(ao) {

include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {

prompt("Desired Output")
asl(ASL0)
pp(TRUE)

}

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 79

Chapter 6: Database Definition
Menu and Record Type Include File Generation.
field(OVAL,DBF_DOUBLE) {
prompt("Output Value")

}
... (Many more field definitions
}

}

The include file, aoRecord.h, generated by dbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH
#define INCaoOIFH
typedef enum {
 aoOIF_Full,
 aoOIF_Incremental,
}aoOIF;
#endif /*INCaoOIFH*/
#ifndef INCaoH
#define INCaoH
typedef struct aoRecord {
 char name[29]; /*Record Name*/
 ... Remaining fields in database common
 double val; /*Desired Output*/
 double oval; /*Output Value*/
 ... remaining record specific fields
} aoRecord;
#define aoRecordNAME 0
... defines for remaining fields in database common
#define aoRecordVAL 42
#define aoRecordOVAL 43
... defines for remaining record specific fields
#ifdef GEN_SIZE_OFFSET
int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{
 aoRecord *prec = 0;
 pdbRecordType->papFldDes[0]->size=sizeof(prec->name);
 pdbRecordType->papFldDes[0]->offset=

(short)((char *)&prec->name - (char *)prec);
 ... code to compute size&offset for other fields in dbCommon
 pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
 pdbRecordType->papFldDes[42]->offset=

(short)((char *)&prec->val - (char *)prec);
 pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
 pdbRecordType->papFldDes[43]->offset=

(short)((char *)&prec->oval - (char *)prec);
 ... code to compute size&offset for remaining fields
 pdbRecordType->rec_size = sizeof(*prec);
 return(0);
80 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
dbExpand
}
#endif /*GEN_SIZE_OFFSET*/

The analog output record support module and all associated device support modules should use this include file. No other
code should use it. Let’s discuss the various parts of the file.:

• The enum generated from the menu definition should be used to reference the value of the field associated with the
menu.

• The typedef and structure defining the record are used by record support and device support to access fields
in an analog output record.

• A #define is present for each field within the record. This is useful for the record support routines that are passed
a pointer to a DBADDR structure. They can have code like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

...
 break;
case aoRecordXXX:

...
break;

default:
...

}

The C source routine aoRecordSizeOffset is automatically called when a record type file is loaded into an IOC.
Thus user code does not have to be aware of this routine except for the following convention: The associate record support
module MUST include the statements:

#define GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

6.13 dbExpand
dbExpand -Idir -Smacsub file1 file2 ...

Multiple -I options can be specified for an include path and multiple -S options for macro substitution. Note that the
environment variable EPICS_DB_INCLUDE_PATH can also be used in place of the -I options.

NOTE: This is supported only on the host.

This command reads the input files and then writes, to stdout, a file containing ASCII definitions for all information
described by the input files. The difference is that comment lines do not appear and all include files are expanded.

This routine is extremely useful if an IOC is not using NFS for the dbLoadDatabase commands. It takes more than 2
minutes to load the base/rec/base.dbd file into an IOC if NFS is not used. If dbExpand creates a local base.dbd
file, it takes about 7 seconds to load (25 MHZ 68040 IOC).
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 81

Chapter 6: Database Definition
dbLoadDatabase
6.14 dbLoadDatabase
dbLoadDatabase(char *db_file, char *path, char *substitutions)

NOTES:

• IOC Only

• Using a path on a vxWorks ioc does not work very well.

• Both path and substitutions can be null.

This command loads a database file containing any of the definitions given in the summary at the beginning of this
chapter.

dbfile must be a file containing only record instances in standard ASCII format. Such files should have an extension of
“.db”.

As each line of dbfile is read, the substitutions specified in substitutions is performed. The substitutions
are specified as follows:

“var1=sub1,var2=sub3,...”

Variables are specified in the dbfile as $(variable_name). If the substitution string

"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) would be substituted with the appropriate data.

6.14.1 EXAMPLE

For example, let test.db be:

record(ai,"$(pre)testrec1")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3") {

field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:

dbLoadDatabase("test.db",0,"pre=TEST,STR=test,SCAN=Passive")

gives the same results as loading:

record(ai,"TESTtestrec1")
record(ai,"TESTtestrec2")
record(stringout,"TESTtestrec3") {

field(VAL,"test")
field(SCAN,"Passive")

}

6.15 dbLoadRecords
dbLoadRecords(char* dbfile, char* substitutions)
82 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
dbLoadTemplate
NOTES:

• IOC Only.

• dbfile must contain only record instances.

• dbLoadRecords is no longer needed.It will probably go away in the future. At the present time
dbLoadRecords loads faster than dbLoadDatabase.

6.16 dbLoadTemplate
dbLoadTemplate(char* template_def)

NOTES:

• IOC Only.

• MSI can be used to expand templates on the host.

dbLoadTemplate reads a template definition file. This file contains rules about loading database instance files, which
contain $(xxx) macros, and performing substitutions.

template_def contains the rules for performing substitutions on the instance files. For convenience two formats are
provided. The format is:

file name.db {
put Version-1 or Version-2 here

}

Version-1

{ set1var1=sub1, set1var2=sub2,...... }
{ set2var1=sub1, set2var2=sub2,...... }
{ set3var1=sub1, set3var2=sub2,...... }

- or -

Version-2

pattern{ var1,var2,var3,....... }
{ sub1_for_set1, sub2_for_set1, sub3_for_set1, ... }
{ sub1_for_set2, sub2_for_set2, sub3_for_set2, ... }
{ sub1_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (file name.db) specifies the record instance input file.

Each set of definitions enclosed in {} is variable substitution for the input file. The input file has each set applied to it to
produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version 2, the
variables are listed in the “pattern{}” line, which must precede the braced substitution lines. The braced substitution
lines contains sets which match up with the pattern{} line.

6.16.1 EXAMPLE

Two simple template file examples are shown below. The examples specify the same substitutions to perform:
this=sub1 and that=sub2 for a first set, and this=sub3 and that=sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 83

Chapter 6: Database Definition
dbReadTest
}

file test.db {
pattern{this,that}
{sub1,sub2}
{sub3,sub4 }

Assume that test.db is:

record(ai,"$(this)record") {
field(DESC,"this = $(this)")

}
record(ai,"$(that)record") {

field(DESC,"this = $(that)")
}

Using dbLoadTemplate with either input is the same as defining the records:

record(ai,"sub1record") {
field(DESC,"this = sub1")

}
record(ai,"sub2record") {

field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}
record(ai,"sub4record") {

field(DESC,"this = sub4")
}

6.17 dbReadTest
dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance files. It just reads all the
specified files

Multiple -I, and -S options can be specified. An arbitrary number of database definition and database instance files can
be specified.
84 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization

7.1 Overview - Environments requiring a main program
If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
performed by statements residing in startup scripts passed to ioccrf. An example main program is:

int main(int argc,char *argv[])
{
 if(argc>=2) {
 ioccrf(argv[1]);
 }
 ioccrf(NULL);
 return(0);
}

The first call to ioccrf executes the commands from the filename passed as an argument to the program containing
main. The second call to ioccrf puts ioccrf into interactive mode. This allows the user to issue the commands
described in chapter "IOC Test Facilities” as well as some commands like show and help.

The file passed as the argument to the command contains statements like:

dbLoadDatabase("../../dbd/<appname>App.dbd",0,0)
registerRecordDeviceDriver(pdbbase)
dbLoadRecords("../../db/<file>.db")
iocInit()

7.2 Overview - vxWorks
After vxWorks is loaded at IOC boot time, commands like the following, normally in the vxWorks startup command file,
are issued to load and initialize the control system software:

For many board support packages the following must be added
#cd <full path to target bin directory>
< cdCommands
cd topbin
ld < <appname>.munch

#The following uses drvTS for vxWorks.
#May be needed for hardware event systems
#TSinit

cd top
dbLoadDatabase(”dbd/<appname>.dbd”)
registerRecordDeviceDriver(pdbbase)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 85

Chapter 7: IOC Initialization
Overview - RTEMS
dbLoadRecords("db/<file>.db")
. . .

iocInit()

cdCommands defines vxWorks global variables that allow vxWorks cd commands for convient locations. For example
in one of my test areas the following cdCommands file appears:

startup = "/home/phoebus6/MRK/epics/example/R3-14/iocBoot/iocexample"
appbin = "/home/phoebus6/MRK/epics/example/R3-14//bin/vxWorks-68040"
top = "/home/phoebus6/MRK/epics/example/R3-14"
topbin = "/home/phoebus6/MRK/epics/example/R3-14/bin/vxWorks-68040"

NOTE: This file is automatically generated via make rules.

The ld command loads the core EPICS softwar, record/device,/driver support, and any other application specific
modules.

The dbLoadDatabase command loads database definition files describing the record/device/driver support used by the
application..

The dbLoadRecords commands load record instance definitions.

iocInit initializes the various epics components.

7.3 Overview - RTEMS
RTEMS applications use the IOC shell to read commands from a startup script in <tftpbase>/epics/<target_hostname>/
st.cmd. In many cases this script can be the same as the one used with vxWorks. The IOC shell provides neither the ld
command nor assignment to variables (e.g. startup, appbin, etc.) and the cd command is limited to directories within the
TFTP server, but this does not present a major problem since the db and dbd files have been copied to standard locations
and the entire application has been statically linked before execution begins.

7.4 iocInit
iocInit performs the following functions:

7.4.1 coreRelease

Prints a messages showing which version of iocCore is being loaded.

7.4.2 taskwdInit

start the task watchdog task. This task accepts requests to watch other tasks. It runs periodically and checks to see if any of
the tasks is suspended. If so it issues an error message. It can also optionally invoke a callback routine

7.4.3 callbackInit

Start the general purpose callback tasks. Three tasks are started with the only difference being scheduling priority.
86 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization
iocInit
7.4.4 dbCaLinkInit

Calls dbCaLinkInit. The initializes the task that handles database channel access links.

7.4.5 initDrvSup

InitDrvSup locates each device driver entry table and calls the init routine of each driver.

7.4.6 initRecSup

InitRecSup locates each record support entry table and calls the init routine.

7.4.7 initDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this is the
initial call.

7.4.8 initDatabase

InitDatabase makes three passes over the database performing the following functions:

• Pass 1: Initializes following fields: rset, dset, mlis. Calls record support init_record (First pass)

• Pass 2: Convert each PV_LINK to DB_LINK or CA_LINK

• Pass 3: Calls record support init_record (second pass)

After the database is initialized dbLockInitRecords is called. It creates the lock sets.

7.4.9 finishDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this is the
finish call.

7.4.10 scanInit

The periodic, event, and io event scanners are initialized and started.

7.4.11 interruptAccept

A global variable ”interruptAccept” is set TRUE. Until this time no request should be made to process records and
all interrupts should be ignored.

7.4.12 initialProcess

dbProcess is called for all records that have PINI TRUE.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 87

Chapter 7: IOC Initialization
Changing iocCore fixed limits
7.4.13 rsrv_init

The Channel Access servers are started

7.5 Changing iocCore fixed limits
The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should be
given before any dbLoad commands.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)

7.5.1 callbackSetQueueSize

Requests for the general putpose callback tasks are placed in a ring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when a ring buffer overflows. It should rarely be necessary to
override this default. Normally the ring buffer overflow messages appear when a callback task fails.

7.5.2 dbPvdTableSize

Record instance names are stored in a process variable directory, which is a hash table. The default number of hash entries
is 512. dbPvdTableSize can be called to change the size. It must be called before any dbLoad commands and must
be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand) then a larger hash
table size speeds up searches for records.

7.5.3 scanOnceSetQueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the ring buffer. The default is
1000. t should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when the
scanOnce task fails.

7.5.4 errlogInit

Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

7.6 TSconfigure
NOTE: This is only supported on vxWorks.

EPICS supports several methods for an IOC to obtain time so that accurate time stamps can be generated. The default is to
obtain NTP time stamps from another computer. The following can be used to change the defaults. If ant argument is
given the value 0 then the default is applied.

TSConfigure(master,sync_rate,clock_rate,master_port,slave_port)
88 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization
initHooks
• master: 1=master timing IOC, 0=slave timing, default is slave.

• sync_rate: The clock sync rate in seconds. This rate tells how often the synchronous time stamp support software
will confirm that an IOC clock is synchronized. The default is 10 seconds.

• clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event system. The value will be set
to the IOC’s internal clock rate when soft timing is used.

• master_port: UDP port for master. The default is 18233

• slave_port: UDP port for slave.

• time_out: UDP information request time out in milliseconds, if zero is entered here, the default will be used
which is 250ms.

• type: 0=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support", by Jim Kowalkowski for details. Note that the default is to be a slave. If no
master is found the slave will obtain a starting time from Unix.

7.7 initHooks
NOTE: starting with release 3.13.0beta12 initHooks was changed drastically (thanks to Benjamin Franksen at BESY).
Old initHooks.c functions will still work but users are encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during ioc initialization. The
states are defined in initHooks.h, which contains the following definitions:

typedef enum {
 initHookAtBeginning,
 initHookAfterCallbackInit,
 initHookAfterCaLinkInit,
 initHookAfterInitDrvSup,
 initHookAfterInitRecSup,
 initHookAfterInitDevSup,
 initHookAfterInitDatabase,
 initHookAfterFinishDevSup,
 initHookAfterScanInit,
 initHookAfterInterruptAccept,
 initHookAfterInitialProcess,
 initHookAtEnd
}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before iocInit reaches the desired state will be called when iocInit reaches that state.
The following is skeleton code to use the facility:

static initHookFunction myHookFunction;

int myHookInit(void)
{
 return(initHookRegister(myHookFunction));
}

static void myHookFunction(initHookState state)
{

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 89

Chapter 7: IOC Initialization
Environment Variables
 switch(state) {
 case initHookAfterInitRecSup:
 ...
 break;
 case initHookAfterInterruptAccept:
 ...
 break;
 default:
 break;
 }
}

An arbitrary number of functions can be registered.

7.8 Environment Variables
The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

These variables can be overridden via the epicsEnvSet function. For example:

 epicsEnvSet("EPICS_CA_CONN_TMO=10")

All epicsEnvSet commands should be issued after iocCore is loaded and before any dbLoad commands.

7.9 Initialize Logging
Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization just realise that the following
can be used if you want to use a private host log file.

epicsEnvSet("EPICS_IOC_LOG_PORT=<port>")
epicsEnvSet("EPICS_IOC_LOG_INET=<inet addr>")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.

iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.
90 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security

8.1 Overview
This chapter describes access security. i.e. the system that limits access to IOC databases. It consists of the following
sections:

1. Overview - This section

2. Quick start - A summary of the steps necessary to start access security.

3. User’s Guide - This explains what access security is and how to use it.

4. Design Summary - Functional Requirements and Design Overview.

5. Application Programmer’s Interface

6. Database Access Security - Access Security features for EPICS IOC databases.

7. Channel Access Security - Access Security features in Channel Access

8. Implementation Overview

The requirements for access security were generated at ANL/APS in 1992. The requirements document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

8.2 Quick Start
In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

• Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.

• Access security files can be reloaded after iocInit via a subroutine record with asSubInit and
asSubProcess as the associated subroutines. Writing the value 1 to this record will cause a reload.

• The vxWorks startup file must contain the following command before iocInit.
asSetFilename(“accessSecurityFile”)

The following is an optional command.
asSetSubstitutions(“var1=sub1,var2=sub2,...”))

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will NEVER be started..

• If asSetFile is given and any error occurs while first initializing access security, then ALL access to that ioc is
denied.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 91

Chapter 8: Access Security
User’s Guide
• If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

8.3 User’s Guide

8.3.1 Features

Access security protects IOC databases from unauthorized Channel Access Clients. Access security is based on the
following:

• Who: Userid of the channel access client.

• Where: Hostid where the user is logged on. This is the host on which the channel access client exists. Thus no
attempt is made to see if a user is local or is remotely logged on to the host.

• What: Individual fields of records are protected. Each record has a field containing the Access Security Group
(ASG) to which the record belongs. Each field has an access security level, which must be 0 or 1.The security level
is defined in the ascii record definition file. Thus the access security level for a field is the same for all record
instances of a record type.

• When: Access rules can contain input links and calculations similar to the calculation record.

8.3.2 Limitations

An IOC database can be accessed only via Channel Access or via the vxWorks shell. It is assumed that access to the local
IOC console is protected via physical security and telnet/rlogin access protected via normal Unix and physical
security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be used to limit access to the
subnet on which the iocs reside.

8.3.3 Definitions

This document uses the following terms:

• ASL: Access Security Level (Called access level in Req Doc)

• ASG: Access Security Group (Called PV Group in Req Doc)

• UAG: User Access Group

• HAG: Host Access Group

8.3.4 Access Security Configuration File

This section describes the format of a file containing definitions of the user access groups, host access groups, and access
security groups. An IOC creates an access configuration database by reading an access configuration file (the extension
.acf is recommended). Lets first give a simple example and then a complete description of the syntax.

8.3.4.1 Simple Example

UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
92 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
User’s Guide
ASG(DEFAULT) {
RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)

}
}

These rules provide read access to anyone located anywhere and write access to user1 and user2 if they are located at
host1 or host2.

8.3.4.2 Syntax Definition

In the following description:

[]Lists optional elements
|Separator for alternatives
...Means that an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE [, NOTRAPWRITE | TRAPWRITE]) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(”<calculation>”)

}
...

}]
...

8.3.4.3 Discussion

• UAG: User Access Group. This is a list of userids. The list may be empty. The same userid can appear in multiple
UAGs. For iocs the userid is taken from the user field of the boot parameters.

• HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. For iocs the host name is taken from the target name of the boot parameters.

• ASG: An access security group. The group ”DEFAULT” is a special case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the group ”DEFAULT”.

• INP<index> Index must have one of the values “A” to “L”. These are just like the INP fields of a
calculation record. It is necessary to define INP fields if a CALC field is defined in any RULE for the ASG.

• RULE This defines access permissions. <level> must be 0 or 1. Permission for a level 1 field implies
permission for level 0 fields. The permissions are NONE, READ, and WRITE. WRITE permission implies
READ permission. The standard EPICS record types have all fields set to level 1 except for VAL, CMD
(command), and RES (reset). An optional argument specifies if writes should be trapped. See the section
below on trapping Channel Access writes for how this is used. If not given the default is NOTRAPWRITE.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 93

Chapter 8: Access Security
User’s Guide
• UAG specifies a list of user access groups that can have the access privilege. If UAG is not defined
then all users are allowed.

• HAG specifies a list of host access groups that have the access privilege. If HAG is not defined then
all hosts are allowed.

• CALC is just like the CALC field of a calculation record except that the result must evaluate to TRUE
or FALSE. If the calculation results in (0,1) meaning (FALSE,TRUE) then the rule (doesn’t apply,
does apply) . The actual test is .99 < result < 1.01.

Each IOC record contains a field ASG, which specifies the name of the ASG to which the record belongs. If this field is
null or specifies a group which is not defined in the access security file then the record is placed in group ”DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are

accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined all hosts are

accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated

with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for
TRUE is .99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access permission.

8.3.5 ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:

ascheck -S “xxx=yyy,...” < "filename"

This is a Unix command. It displays errors on stdout. If no errors are detected it prints nothing. Only syntax errors not
logic errors are detected. Thus it is still possible to get your self in trouble. The flag -S means a set of macro substitutions
may appear. This is just like the macro substitutions for dbLoadDatabase.

8.3.6 IOC Access Security Initialization

In order to have access security turned on during IOC initialization the following command must appear in the startup file
before iocInit is called:

asSetFilename("<access security file>")

If this command does not appear then access security will not be started by iocInit. If an error occurs when iocInit calls
asInit than all access to the ioc is disabled, i.e. no channel access client will be able to access the ioc.

Access security also supports macro substitution just like dbLoadDatabase. The following command specifies the
desired substitutions:

asSetSubstitutions(“var1=sub1,var2=sub2,...”)

This command must be issued before iocInit.

After an IOC is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:
94 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
User’s Guide
asInit

It is also possible to reissue asSetFilename and/or asSetSubstitutions before asInit. If any error occurs
during asInit the old access security configuration is maintained. It is NOT permissable to call asInit before
iocInit is called.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

8.3.7 Database Configuration

8.3.7.1 Access Security Group

Each database record has a field ASG which holds a character string. Any database configuration tool can be used to give
a value to this field. If the ASG of a record is not defined or is not equal to a ASG in the configuration file then the record
is placed in DEFAULT.

8.3.7.2 Subroutine Record Support

Two subroutines, which can be attached to a subroutine record, are available (provided with iocCore):

asSubInit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last call to asSetFilename so that it contains the new configuration desired.

2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.

The following action is taken:

3. When the value is found to be 1, asInit is called and the value set back to 0.

4. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or a time-out occurs. If initialization fails the record is placed into alarm with a severity determined by
BRSV.

8.3.7.3 Record Type Description

Each field of each record type has an associated access security level of ASL0 or ASL1. See the chapter “Database
Definition” for details.

8.3.8 Example:

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access to most level 0 fields only if
the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have write access to all fields but
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 95

Chapter 8: Access Security
User’s Guide
6. IOC channel access clients always have level 1 write privilege.

Most Linac IOC records will not have the ASG field defined and will thus be placed in ASG “DEFAULT". The following
records will have an ASG defined:

• LI:OPSTATE and any other records that need tighter control have ASG="critical". One such record could be
a subroutine record used to cause a new access configuration file to be loaded. LI_OPSTATE has the value (0,1)
if the Linac is (not operational, operational).

• LI:lev1permit has ASG="permit". In order for the opSup, linacSup, or an appDev to have write
privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc) {ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC(”A=1”)

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)
CALC(”A=0”)

}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
 UAG(opSup,linacSup,appDev)

 }
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
RULE(1,WRITE) {
96 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Design Summary
UAG(opSup,linacSup,appdev)
CALC("B=1")

}
 RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}
}

8.4 Design Summary

8.4.1 Summary of Functional Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

8.4.2 Additional Requirements

8.4.2.1 Performance

Although the functional requirements doesn’t mention it, a fundamental goal is performance. The design provides almost
no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynamically
changing a records access control group. Dynamically changing the user access groups, host access groups, or the rules,
however, can be a time consuming operation. This is done, however, by a low priority IOC task and thus does not impact
normal ioc operation.

8.4.2.2 Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded tightly in database or
channel access.

8.4.2.3 No Access Security within an IOC

Within an IOC no access security is invoked. This means that database links and local channel access clients calls are not
subject to access control. Also test routines such as dbgf should not be subject to access control.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 97

Chapter 8: Access Security
Design Summary
8.4.2.4 Defaults

It must be possible to easily define default access rules.

8.4.2.5 Access Security is Optional

When an IOC is initialized, access security is optional.

8.4.3 Design Overview

The implementation provides a library of routines for accessing the security system. This library has no knowledge of
channel access or IOC databases, i.e. it is generic. Database access, which is responsible for protecting an IOC database,
calls library routines to add each IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access interact with it.

8.4.3.1 Configuration File

User access groups, host access groups, and access security groups are configured via an ASCII file.

8.4.3.2 Access Security Library

The access security library consists of the following groups of routines: initialization, group manipulation, client
manipulation, access computation, and diagnostic. The initialization routine reads a configuration file and creates a
memory resident access control database. The group manipulation routines allow members to be added and removed from
access groups. The client routines provide services for clients attached to members.

8.4.3.3 IOC Database Access Security

The interface between an IOC database and the access security system.

8.4.3.4 Channel Access Security

Whenever the Channel Access broadcast server receives a ca_search request and finds the process variable, it calls
asAddClient. Whenever it disconnects it calls asRemoveClient. Whenever it issues a get or put to the database it
must call asCheckGet or asCheckPut.

Channel access is responsible for implementing the requirement of allowing the user to be changed dynamically.

8.4.4 Comments

It is likely that the access rules will be defined such that many IOCs will attach to a common process variable. As a result
the IOC containing the PV will have many CA clients.

What about password protection and encryption? I maintain that this is a problem to be solved in a level above the access
security described in this document. This is the issue of protecting against the sophisticated saboteur.

8.4.5 Performance and Memory Requirements

Performance has not yet been measured but during the tests to measure memory usage no noticeable change in
performance during ioc initialization or during Channel Access clients connection was noticed. Unless access privilege is
violated the overhead during channel access gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:
98 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface
1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels. Each time it
begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

The memory consumption was measured before iocInit, after iocInit, after caput connected to all channels, and
after caget connected to all 5000 channels. This was done for APS release 3.11.5 (before access security) and the first
version which included access security. The results were:

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the memory usage before iocInit
resulted from storage for records. The increase since R3.11.5 results from added fields to dbCommon. Fields were added
for access security, synchronous time support and for the new caching put support. The other increases in memory usage
result from the control blocks needed to support access control. The entire design was based on maximum performance.
This resulted in increased memory usage.

8.5 Access Security Application Programmer’s Interface

8.5.1 Definitions
typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
 asClientCOAR/*Change of access rights*/
 /*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

8.5.2 Initialization
long asInitialize(ASINPUTFUNPTR inputFunction)
long asInitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller must provide a routine to
provide input lines for asInitialize. asInitFile and asInitFP do their own input and also perform macro
substitutions.

The initilization routines can be called multiple times. If an access system already exists the old definitions are removed
and the new one initialized. Existing members are placed in the new ASGs.

R3.11.5 After
Before iocInit 4,244,520 4,860,840
After iocInit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 99

Chapter 8: Access Security
Access Security Application Programmer’s Interface
8.5.3 Group manipulation

8.5.3.1 add Member

long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

This routine adds a new member to ASG asgName. The calling routine must provide storage for ASMEMBERPVT. Upon
successful return *ppvt will be equal to the address of storage used by the access control system. The access system
keeps an orphan list for all asgNames not defined in the access configuration.

The caller must provide permanent storage for asgName.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.2 remove Member

long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it returns an error status of
S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.3 get Member Pvt

void *asGetMemberPvt(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

This routine returns NULL if access security is not active

8.5.3.4 put Member Pvt

long asPutMemberPvt(ASMEMBERPVT pvt,void *userPvt);

This routine is used to set the pointer returned by asGetMemberPvt.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.5 change Group

long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);

This routine changes the group for an existing member. The access rights of all clients of the member are recomputed.

The caller must provide permanent storage for newAsgName.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4 Client Manipulation

8.5.4.1 add Client

long asAddClient(ASCLIENTPVT *ppvt,ASMEMBERPVT pvt,int asl,
 char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for ASCLIENTPVT.
ASMEMBERPVT is the value that was set by calling asAddMember. asl is the access security level.

The caller must provide permanent storage for user and host.
100 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface
This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4.2 change Client

long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the values asl, user, and host for an existing client. Again the caller must provide
permanent storage for user and host. It is permissible to use the same user and host used in the call to
asAddClient with different values.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4.3 remove Client

long asRemoveClient(ASCLIENTPVT *pvt);

This call removes a client.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4.4 get Client Pvt

void *asGetClientPvt(ASCLIENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

This routine returns NULL if access security is not active.

8.5.4.5 put Client Pvt

void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returned by asGetClientPvt.

8.5.4.6 register Callback

long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

 This routine registers a callback that will be called whenever the access privilege of the client changes.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4.7 check Get

long asCheckGet(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) get access rights.

8.5.4.8 check Put

long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) put access rights
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 101

Chapter 8: Access Security
Access Security Application Programmer’s Interface
8.5.5 Access Computation

8.5.5.1 compute all Asg

long asComputeAllAsg(void);

This routine calls asComputeAsg for each access security group.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.5.2 compute Asg

long asComputeAsg(ASG *pasg);

This routine calculates all CALC entries for the ASG and calls asCompute for each client of each member of the specified
access security group.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.5.3 compute access
rights

long asCompute(ASCLIENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by the access library itself rather than
use code.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.6 Diagnostic

8.5.6.1 dump

int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the information obtained from
the access security file is printed.

If verbose is TRUE then additional information is printed. The value of each INP is displayed. The list of members
belonging to each ASG and the clients belonging to each member are displayed. If member callback is specified as an
argument, then it is called for each member. If client callback is specified, it is called for each access security client.

8.5.6.2 dump UAG

int asDumpUag(char *uagname)

This routine displays the specified UAG or if uagname is NULL each UAG defined in the access security database.

8.5.6.3 dump HAG

int asDumpHag(char *hagname)

This routine displays the specified UAG or if uagname is NULL each UAG defined in the access security database.

8.5.6.4 dump Rules

int asDumpRules(char *asgname)
102 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Database Access Security
This routine displays the rules for the specified ASG or if asgname is NULL the rules for each ASG defined in the access
security database.

8.5.6.5 dump member

int asDumpMem(char *asgname,
void (*memcallback)(ASMEMBERPVT),int clients)

This routine displays the member and, if clients is TRUE, client information for the specified ASG or if asgname is NULL
the member and client information for each ASG defined in the access security database. It also calls memcallback for
each member if this argument is not NULL.

8.5.6.6 dump hash table

int asDumpHash(void)

This shows the contents of the hash table used to locate UAGs and HAGs,

8.6 Database Access Security

8.6.1 Access Level definition

The definition of access level means that a level is defined for each field of each record type.

1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field access_security
_level. In addition definitions exist for the symbols: ASL0 and ASL1.

2. Each field description in a record description contains a field with the value ASLx.

The meanings of the Access Security Level definitions are as follows:

• ASL0Assigned to fields used during normal operation

• ASL1Assigned to fields that may be sensitive to change. Permission to access this level implies permission for
ASL0.

Most record types assign ASL as follows: The fields VAL, RES (Reset), and CMD use the value ASL0. All other fields use
ASL1.

8.6.2 Access Security Group definition

dbCommon contains the fields ASG and ASP. ASG (Access Security Group) is a character string. The value can be
assigned via a database configuration tool or else a utility could be provided to assign values during ioc initialization. ASP
is an access security private field. It contains the address of an ASGMEMBER.

8.6.3 Access Client Definition

Struct dbAddr contains a field asPvt, which contains the address of an ASGCLIENT. This definition is also added to
struct db_addr so that old database access also supports access security.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 103

Chapter 8: Access Security
Database Access Security
8.6.4 Database Access Library

Two files asDbLib.c and asCa.c implement the interface between IOC databases and access control. It contains the
following routines:

8.6.4.1 Initialization

int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next call to asInit uses this file. This routine
must be called before iocInitotherwise access configuration is disabled. Is access security is disabled during iocInit it
will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int asInit()
int asInitAsyn(ASDBCALLBACK *pcallback)

This routines call asInitialize. If the current access configuration file, as specified by asSetFilename, is NULL
then the routine just returns, otherwise the configuration file is used to create the access configuration database.

This routine is called by iocInit. asInit can also be called at any time to change the access configuration
information.

asInitAsyn spawns a task asInitTask to perform the initialization. This allows asInitAsyn to be called from a
subroutine called by the process entry of a subroutine record. asInitTask calls taskwdInsert so that if it suspends
for some reason taskwd can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides an ASDBCALLBACK then when either initialization completes or taskwd detects a failure the users
callback routine is called via one of the standard callback tasks.

asInitAsyn will return a value of -1 if access initialization is already active. It returns 0 if asInitTask is
successfully spawned.

8.6.4.2 Routines used by Channel Access Server

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument is defined as a void* so
that both old and new database access can be used.

void * asDbGetMemberPvt(void *paddr)

Get ASMEMBERPVT for the field referenced by a database access structure. The argument is defined as a void* so that
both old and new database access can be used.

8.6.4.3 Routine to test asAddClient

int astac(char *pname,char *user,char *host)

This is a routine to test asAddClient. It simulates the calls that are made by Channel Access.

8.6.4.4 Subroutines attached to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new access configuration database.
104 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Channel Access Security
long asSubInit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the record, asSubProcess
calls asInit. If asInit returns success, it returns with asynchronously. When asInitTask calls the completion
routine supplied by asSubProcess, the return status is used to place the record in alarm.

8.6.4.5 Diagnostic Routines

These routines provide interfaces to the asDump routines described in the previous chapter. They do NOT lock before
calling the associated routine. Thus they may fail if the access security configuration is changing while they are running.
However the danger of the user accidently aborting a command and leaving the access security system locked is
considered a risk that should be avoided.

asdbdump(void)

This routine calls asDump with a member callback and with verbose TRUE.

aspuag(char *uagname)

This routine calls asDumpUag.

asphag(char *hagname)

This routine calls asDumpHag.

asprules(char *asgname)

This routine calls asDumpRules.

aspmem(char *asgname,int clients)

This routine calls asDumpMem.

8.7 Channel Access Security
EPICS Access Security is designed to protect Input Output Controllers (IOCs) from unauthorized access via the Channel
Access (CA) network transparent communication software system. This chapter describes the interaction between the CA
server and the Access Security system. It also briefly describes how the current access rights state is communicated to
clients of the EPICS control system via the CA communication system and the CA client interface.

8.7.1 CA Server Interfaces to the Access Security System

The CA server calls asAddClient() and asRegisterClientCallback() for each of the channels that a client
connects to the server. The routine asRemoveClient() is called whenever the client clears (removes) a channel or
when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these strings are supplied to the
server when the client connects and can be updated at any time by the client. When these strings change then
asChangeClient() is called for each of the channels maintained by the server for the client.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 105

Chapter 8: Access Security
Trapping Channel Access Writes
The server checks for read access when processing gets and for write access when processing puts. If access is denied
then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback (monitor) for the client. If there
is read access the server always sends an initial update indicating the current value. If there isn’t read access the server
sends one update indicating no read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback registered with
asRegisterClientCallback(). When a channel’s access rights change the server communicates the current state
to the client library. If read access to a channel is lost and there are events (monitors) registered on the channel then the
server sends an update to the client for each of them indicating no access and disables future updates for each event. If
read access is reestablished to a channel and there are events (monitors) registered on the channel then the server re-
enables updates and sends an initial update message to the client for each of them.

8.7.2 Client Interfaces

Additional details on the channel access client side callable interfaces to access security can be obtained from the
“Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel that it has established. The
client library receives asynchronous updates of the current access rights state from the server. It uses this state to check for
read access when processing gets and for write access when processing puts. If a program issues a channel access request
that is inconsistent with the client library’s current knowledge of the access rights state then access is denied and an error
code is returned to the application. The current access rights state as known by the client library can be tested by an
applications program with the C macros ca_read_access() and ca_write_access().

An application program can also receive asynchronous notification of changes to the access rights state by registering a
function to be called back when the client library updates its storage of the access rights state. The application’s call back
function is installed for this purpose by calling ca_replace_access_rights_event().

If the access rights state changes in the server after a request is queued in the client library but before the request is
processed by the server then it is possible that the request will fail in the server. Under these circumstances then an
exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is initially registered. If there isn’t read access
then the status in the arguments to the application program’s event call back function indicates no read access and the
value in the arguments to the clients event call back is set to zero. If the read access right changes after the event is initially
registered then another update is supplied to the application programs call back function.

8.8 Trapping Channel Access Writes
Access security provides a facility asTrapWrite that can trap write requests and pass them to any facility that registers a
listener. In order to use this facility three things are necessary:

1. The facility, e.g. the channel access server, using access security must make two calls: asTrapWriteBefore
and asTrapWriteAfter. These are described in asLib.h. The Channel access server on the ioc makes these
calls.

2. asTrapWrite gets called by asTrapWriteBefore and asTrapWriteAfter. asTrapWrite uses the
TRAPWRITE option specified with the RULEs given in the access configuration file to decide if listeners should be
called. asTrapWrite also includes a routine asTrapWriteRegisterListener.

3. Some facility not included with access security must call asTrapWriteRegisterListener. If nothing calls
asTrapWriteRegisterListener, asTrapWrite does nothing.
106 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Control: Implementation Overview
The purpose of this section is to describe how a facility can use asTrapWrite.h, which has the description:

typedef struct asTrapWriteMessage {
 char *userid;
 char *hostid;
 void *serverSpecific;
 void *userPvt;
} asTrapWriteMessage;

typedef void *asTrapWriteId;
typedef void(*asTrapWriteListener)(asTrapWriteMessage *pmessage,int after);

asTrapWriteId asTrapWriteRegisterListener(asTrapWriteListener func);
void asTrapWriteUnregisterListener(asTrapWriteId id);

After a facility calls asTrapWriteRegisterListener it’s asTrapWriteListener will get called before and
after each write with an associated RULE that has the option LOGWRITE set.

asTrapWriteRegisterListener is passed the address of a asTrapWriteMessage. This message contains
thye following fields:

• userid - Userid of whoever originated the request.

• hostid - Hostid of whoever originated the request.

• serverSpecific - The meaning of this field is server specific. The listener MUST know what type of server is
supplying the messages.

• userPvt - This field is for use by the asTrapWriteListener. When the listener is called before the write,
userPvt has the value 0. The listener can give it any value it desires and userPvt will have have the same value
when the listener gets called after the write.

asTrapWriteListener delays the associated server thread so it must not do anything that causes to to block.

The IOC Channel Acess Server makes the calls to asTrapWriteBefore and asTrapWriteAfter.
ServerSpecific is the dbAddr describing the database location.

8.9 Access Control: Implementation Overview
This chapter provides a few aids for reading the access security code. Include file asLib.h describes the control blocks
used by the access security library.

8.9.1 Implementation Overview

The following files form the access security system:

• asLib.h Definitions for the portion of access security that is independent of IOC databases.

• asDbLib.h Definitions for access routines that interface to an IOC database.

• asLib_lex.l Lex and Yacc (actually EPICS flex and antelope) are used to parse the access configuration file.
This is the lex input file.

• asLib.y This is the yacc input file. Note that it includes asLibRoutines.c, which do most of the work.

• asLibRoutines.c These are the routines that implement access security. This code has no knowledge of the
database or channel access. It is a general purpose access security implementation.

• asDbLib.c This contains the code for interfacing access security to the IOC database.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 107

Chapter 8: Access Security
Access Control: Implementation Overview
• asCa.c This code contains the channel access client code that implements the INP and CALC definitions in an
access security database.

• ascheck.c The Unix program which performs a syntax check on a configuration file.

8.9.2 Locking

Because it is possible for multiple tasks to simultaneously modify the access security database it is necessary to provide
locking. Rather than try to provide low level locking, the entire access security database is locked during critical
operations. The only things this should hold up are access initialization, CA searches, CA clears, and diagnostic routines.
It should NEVER cause record processing to wait. In addition CA gets and puts should never be delayed. One exception
exists. If the ASG field of a record is changed then asChangeGroup is called which locks.

All operations invoked from outside the access security library that cause changes to the internal structures of the access
security database.routines lock.
108 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Structures
8.10 Structures

ASBASE
 uagList
 hagList
 asgList
 phash

ASG
 node
 name
 inpList
 ruleList
 memberList
 pavalue
 inpBad
 inpChanged

UAG
 node
 name
 list

HAG
 node
 name
 list

UAGNAME
 node
 user

HAGNAME
 node
 host

ASGINP
 node
 inp
 capvt
 pasg

inpIndex

ASGRULE
 node
 access
 level
 inpUsed
 result
 calc
 rpcl
 uaglist
 hagList

ASGHAG
 node
 phag

ASGUAG
 node
 puag

ASGCLIENT
 node

pasgMember
 user
 host
 userPvt
 pcallback
 level
 access

ASGMEMBER
 node
 pasg
 clientList
 asgName
 userPvt
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 109

Chapter 8: Access Security
Structures
110 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities

9.1 Overview
This chapter describes a number of IOC test routines that are of interest to both application developers and system
developers. The routines are available via iocsh or the vxWorks shell. For both shells, the parentheses are optional, but the
arguments must be separated by commas. On vxWorks all character string arguments must be enclosed in “”. For iocsh
the "" are optional. For example:

dbpf("aiTest","2")
dbpf "aiTest","2"

are both valid with both iocsh and with the vxWorks shell.

dbpf aiTest 2

Is vaid for iocsh but not for the vxWorks shell.

The user should also be aware of the field TPRO, which is present in every database record. If it is set TRUE then a
message is printed each time its record is processed and a message is printed for each record processed as a result of it
being processed.

9.2 Database List, Get, Put

9.2.1 dbl

Database List:

dbl(“<record type>”,”<filename>”,"<field list>")

Examples

dbl
dbl(“ai”,0,0)

This command prints the names of records in the run time database. If <record type> is not specified, all records are
listed. If <record type> is specified, then only the names of the records of that type are listed.

If <filename> is specified the output is written to the specified file (if the file already exists it is overwritten). If this
argument is 0 then the output is sent to stdout.

If <field list> is given then the values of the fields specified are also printed.

9.2.2 dbgrep

List Record Names That Match a Pattern:
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 111

Chapter 9: IOC Test Facilities
Database List, Get, Put
dbgrep(“<pattern>”)

Examples

dbgrep(“S0*”)
dbgrep(“*gpibAi*”)

Lists all record names that match a pattern. The pattern can contain any characters that are legal in record names as well as
“*”, which matches 0 or more characters.

9.2.3 dba

Database Address:

dba(“<record_name.field_name>”)

Example

dba(“aitest”)
dba(“aitest.VAL”)

This command calls dbNameToAddr and then prints the value of each field in the dbAddr structure describing the field.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

9.2.4 dbgf

Get Field:

dbgf(“<record_name.field_name>”)

Example:

dbgf(“aitest”)
dbgf)“aitest.VAL”)

This performs a dbNameToAddr and then a dbGetField. It prints the field type and value. If the field name is not
specified then VAL is assumed (the two examples above are equivalent).

9.2.5 dbpf

Put Field:

dbpf(“<record_name.field_name>”,”<value>”)

Example:

dbpf(“aitest”,”5.0”)

This command performs a dbNameToAddr followed by a dbPutField and dbgf. If <field_name> is not specified
VAL is assumed.

9.2.6 dbpr

Print Record:

dbpr(“<record_name>”,<interest level>)

Example
112 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Breakpoints
dbpr(“aitest”,2)

This command prints all fields of the specified record up to and including those with the indicated interest level. Interest
level has one of the following values:

• 0: Fields of interest to an Application developer and that can be changed as a result of record processing.

• 1: Fields of interest to an Application developer and that do not change during record processing.

• 2: Fields of major interest to a System developer.

• 3: Fields of minor interest to a System developer.

• 4: Fields of no interest.

9.2.7 dbtr

Test Record:

dbtr(“<record_name>”)

This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose is to test record processing.

9.2.8 dbnr

Print number of records:

dbnr(<all_recordtypes>)

This command displays the number of records of each type and the total number of records. If all_record_types is
0 then only record types with record instances are displayed otherwise all record types are displayed.

9.3 Breakpoints
A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility has been
constructed in such a way that the execution of all locksets other than ones with breakpoints will not be interrupted. This
was done by executing the records in the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing breakpoints. A record that is
processed through external means, e.g.: a scan task, is called an entrypoint into that lockset. The dbstat command
described below will list all detected entrypoints to a lockset, and at what rate they have been detected.

9.3.1 dbb

Set Breakpoint:

dbb(“<record_name>”)

Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint continuation task (one per lockset).
Further record execution in this lockset is run within this task’s context. This task will automatically quit if two conditions
are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the lockset have
been continued.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 113

Chapter 9: IOC Test Facilities
Breakpoints
9.3.2 dbd

Remove Breakpoint:

dbd(”<record_name>”)

Removes a breakpoint from a record.

9.3.3 dbs

Single Step:

dbs(“<record_name>”)

Steps through execution of records within a lockset. If this command is called without an argument, it will automatically
step starting with the last detected breakpoint.

9.3.4 dbc

Continue:

dbc(“<record_name>”)

Continues execution until another breakpoint is found. This command may also be called without an argument.

9.3.5 dbp

Print Fields Of Suspended Record:

dbp("<record_name>,<interest_level>)

Prints out the fields of the last record whose execution was suspended.

9.3.6 dbap

Auto Print:

dbap(“<record_name>”)

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be printed
after the record is processed.

9.3.7 dbstat

Status:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the records with breakpoints
set, what records have the autoprint feature set (by dbap), and what entrypoints have been detected. It also displays the
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
 Entrypoint: so#C: 00001 C/S: 0.1
 Breakpoint: so(ap)
114 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Error Logging
LSet: 00008#B: 00001 T: 0x22fee4c
 Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.” The other is not
currently stopped, but contains a breakpoint at record “output.” “LSet:” is the lockset number that is being considered.
“#B:” is the number of breakpoints set in records within that lockset. “T:” is the vxWorks task ID of the continuation
task. “C:” is the total number of calls to the entrypoint that have been detected. “C/S:” is the number of those calls that
have been detected per second. (ap) indicates that the autoprint feature has been turned on for record “so.”

9.4 Error Logging

9.4.1 eltc

Display error log messages on console:

eltc(int noYes)

This determines if error messages are displayed on vxWorks console. A value of 0 means no and any other value means
yes.

9.5 Hardware Reports

9.5.1 dbior

I/O Report:

dbior (“<driver_name>”,<interest level>)

This command calls the report entry of the indicated driver. If <driver_name> is not specified then the report for all
drivers is generated. It also calls the report entry of all device support modules. Interest level is one of the following:

• 0: Print a short report for each module.

• 1: Print additional information.

• 2: Print even more info. The user may be prompted for options.

9.5.2 dbhcr

Hardware Configuration Report:

dbhcr("filename")

This command produces a report of all hardware links. To use it on the IOC, issue the command:

dbhcr > report
 or

dbhcr("report")

The report will probably not be in the sort order desired. The Unix command:
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 115

Chapter 9: IOC Test Facilities
Scan Reports
sort report > report.sort

should produce the sort order you desire.

9.6 Scan Reports

9.6.1 scanppl

Print Periodic Lists:

scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specified rate. If rate is 0.0 all period lists are shown.

9.6.2 scanpel

Print Event Lists:

scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunber. If event_number is 0 all event
scan lists are shown.

9.6.3 scanpiol

Print I/O Event Lists:

scanpiol

This routine prints a list of all records in the I/O event scan lists.

9.7 Time Server Report
NOTE: TSreport is implemented bt drvTS.c. It is only available on vxWorks

9.7.1 TSreport

Format:

TSreport

This routine prints out information about the Time server. This includes:

• Slave or Master

• Soft or Hardware synchronized

• Clock and Sync rates

• etc.
116 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Access Security Commands
9.8 Access Security Commands

9.8.1 asSetSubstitutions

Format:

asSetSubstitutions("substitutions")

Specifies macro substitutions used when access security is initialized.

9.8.2 asSetFilename

Format:

asSetFilename(“<filename>”)

This command defines a new access security file.

9.8.3 asInit

Format:

asInit

This command reinitializes the access security system. It rereads the access security file in order to create the new access
security database. This command is useful either because the asSetFilename command was used to change the file or
because the file itself was modified. Note that it is also possible to reinitialize the access security via a subroutine record.
See the access security document for details.

9.8.4 asdbdump

Format:

asdbdump

This provides a complete dump of the access security database.

9.8.5 aspuag

Format:

aspuag(“<user access group>”)

Print the members of the user access group. If no user access group is specified then the members of all user access
groups are displayed.

9.8.6 asphag

Format:

asphag(“<host access group>”)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 117

Chapter 9: IOC Test Facilities
Channel Access Reports
Print the members of the host access group. If no host access group is specified then the members of all host access
groups are displayed.

9.8.7 asprules

Format:

asprules(“<access security group>”)

Print the rules for the specified access security group or if no group is specified for all groups.

9.8.8 aspmem

Format:

aspmem(“<access security group>”, <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is specified. If
<print clients> is (0, 1) then Channel Access clients attached to each member (are not, are) shown.

9.9 Channel Access Reports

9.9.1 ca_channel_status

Format:

ca_channel_status(taskid)

Prints status for each channel in use by specialized vxWorks task.

9.9.2 casr

Channel Access Server Report

casr(<level>)

Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each client attached. The summary lines
contain the client’s login name, client’s host name, client’s protocol version number, and the number of
channel created within the server by the client.

1
Level one provides all information in level 0 and adds the task id used by the server for each client, the
client’s IP protocol type, the file number used by the server for the client, the number of seconds elapsed
since the last request was received from the client, the number of seconds elapsed since the last response was
sent to the client, the number of unprocessed request bytes from the client, the number of response bytes
which have not been flushed to the client, the client’s IP address, the client’s port number, and the client’s
state.

2

118 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Interrupt Vectors
Level two provides all information in levels 0 and 1 and adds the number of bytes allocated by each client
and a list of channel names used by each client. Level 2 also provides information about the number of bytes
in the server’s free memory pool, the distribution of entries in the server’s resource hash table, and the list of
IP addresses to which the server is sending beacons. The channel names are shown in the form:

<name>(nrw)

where
n is number of ca_add_events the client has on this channel
r is (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

9.9.3 dbel

Format:

dbel(“<record_name>”)

This routine prints the Channel Access event list for the specified record.

9.9.4 dbcar

Database to Channel Access Report - See “Record Link Reports”

9.10 Interrupt Vectors

9.10.1 veclist

Format:

veclist

NOTE: Only available on vxWorks

Print Interrupt Vector List

9.11 EPICS

9.11.1 epicsParamShow

Format:

epicsParamShow
or

epicsPrtEnvParams

Print the environment variables that are created with epicsEnvSet. These are defined in <base>/config/CONFIG_ENV and
<base>/config/CONFIG_SITE_ENV or else by user applications calling epicsEnvSet.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 119

Chapter 9: IOC Test Facilities
Database System Test Routines
9.11.2 epicsEnvShow

Format:

epicsEnvShow("<name>")

Show Environment variables. On vxWorks it shows the variables created via calls to putenv.

9.11.3 epicsRelease

Format:

coreRelease

Print release of iocCore.

9.12 Database System Test Routines
These routines are normally only of interest to EPICS system developers NOT to Application Developers.

9.12.1 dbt

Measure Time To Process A Record:

dbt(“<record_name”)

Times the execution of 100 successive processings of record record_name. Note that process passive and forward links
within this record may incur the processing of other records in its lockset. This function is a wrapper around the VxWorks
timexN() function, and directly displays its output. Therefore one must divide the result by 100 to get the execution
time for one processing of record_name.

9.12.2 dbtgf

Test Get Field:

dbtgf(“<record_name.field_name>”)

Example:

dbtgf(“aitest”)
dbtgf)“aitest.VAL”)

This performs a dbNameToAddr and then calls dbGetField with all possible request types and options. It prints the
results of each call. This routine is of most interest to system developers for testing database access.

9.12.3 dbtpf

Test Put Field:

dbtpf(“<record_name.field_name>”,”<value>”)

Example:

dbtpf(“aitest”,”5.0”)
120 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Record Link Reports
This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for each possible request type.
This routine is of interest to system developers for testing database access.

9.12.4 dbtpn

Test Put Notify:

dbtpn(“<record_name.field_name>”,”<value>”)

Example:

dbtpn(“aitest”,”5.0”)

This command performs a dbNameToAddr, then calls dbPutNotify and has a callback routine that prints a message
when it is called. This routine is of interest to system developers for testing database access.

9.13 Record Link Reports

9.13.1 dblsr

Lock Set Report:

dblsr(<recordname>,<level>)

This command generates a report showing the lock set to which each record belongs. If recordname is 0 all records are
shown, otherwise only records in the same lock set as recordname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

9.13.2 dbcar

Database to channel access report

dbcar(<recordname>,<level>)

This command generates a report showing database channel access links. If recordname is 0 then information about all
records is shown otherwise only information about the specified record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

9.13.3 dbhcr

Report hardware links. See “Hardware Reports”.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 121

Chapter 9: IOC Test Facilities
Old Database Access Testing
9.14 Old Database Access Testing
These routines are of interest to EPICS system developers. They are used to test the old database access interface, which
is still used by Channel Access.

9.14.1 gft

Get Field Test:

gft(“<record_name.field_name>”)

Example:

gft(“aitest”)
gft(“aitest.VAL”)

This performs a db_name_to_addr and then calls db_get_field with all possible request types. It prints the results
of each call. This routine is of interest to system developers for testing database access.

9.14.2 pft

Put Field Test:

pft(“<record_name.field_name>”,”<value>”)

Example:

pft(“aitest”,”5.0”)

This command performs a db_name_to_addr, db_put_field, db_get_field and prints the result for each
possible request type. This routine is of interest to system developers for testing database access.

9.14.3 tpn

Test Put Notify:

tpn(“<record_name.field_name>”,”<value>”)

Example:

tpn(“aitest”,”5.0”)

This routine tests dbPutNotify via the old database access interface.

9.15 Routines to dump database information

9.15.1 dbDumpPath

Dump Path:

dbDumpPath(pdbbase)
122 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Routines to dump database information
 dbDumpPath(pdbbase)

The current path for database includes is displayed.

9.15.2 dbDumpMenu

Dump Menu:

dbDumpMenu(pdbbase,”<menu>”)

 dbDumpMenu(pdbbase,”menuScan”)

If the second argument is 0 then all menus are displayed.

9.15.3 dbDumpRecordType

Dump Record Description:

dbDumpRecordType(pdbbase,”<record type>”)

 dbDumpRecordType(pdbbase,”ai”)

If the second argument is 0 then all descriptions of all records are displayed.

9.15.4 dbDumpFldDes

Dump Field Description:

dbDumpFldDes(pdbbase,”<record type>”,”<field name>”)

 dbDumpFldDes(pdbbase,”ai”,”VAL”)

If the second argument is 0 then the field descriptions of all records are displayed. If the third argument is 0 then the
description of all fields are displayed.

9.15.5 dbDumpDevice

Dump Device Support:

dbDumpDevice(pdbbase,”<record type>”)

 dbDumpDevice(pdbbase,”ai”)

If the second argument is 0 then the device support for all record types is displayed.

9.15.6 dbDumpDriver

Dump Driver Support:
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 123

Chapter 9: IOC Test Facilities
Routines to dump database information
dbDumpDriver(pdbbase)

 dbDumpDriver(pdbbase)

9.15.7 dbDumpRecord

Dump Record Instances:

dbDumpRecord(pdbbase,”<record type>”,level)

 dbDumpRecords(pdbbase,”ai”)

If the second argument is 0 then the record instances for all record types is displayed. The third argument determines
which fields are displayed just like for the command dbpr.

9.15.8 dbDumpBreaktable

Dump breakpoint table

dbDumpBreaktable(pdbbase,name)

 dbDumpBreaktable(pdbbase,”typeKdegF”)

This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

9.15.9 dbPvdDump

Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

 dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If verbose
is not 0 then the command also displays the names which hash to each hash table entry.
124 EPICS IOC Application Developer’s Guide

Chapter 10: IOC Error Logging

10.1 Overview
Errors detected by an IOC can be divided into classes: Errors related to a particular client and errors not attributable to a
particular client. An example of the first type of error is an illegal Channel Access request. For this type of error, a status
value should be passed back to the client. An example of the second type of error is a device driver detecting a hardware
error. This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

• In many cases it is not possible for the routine detecting an error to decide which type of error occurred.

• Normally, only the routine detecting the error knows how to generate a fully descriptive error message. Thus, if a
routine decides that the error belongs to a particular client and merely returns an error status value, the ability to
generate a fully descriptive error message is lost.

• If a routine always generates fully descriptive error messages then a particular client could cause error message
storms.

• While developing a new application the programmer normally prefers fully descriptive error messages. For a
production system, however, the system wide error handler should not normally receive error messages cause by a
particular client.

If used properly, the error handling facilities described in this chapter can process both types of errors.

This chapter describes the following:

• Error Message Generation Routines - Routines which pass messages to the errlog Task.

• errlog Task - A task that displays error messages on the target console and also passes the messages to all
registered system wide error logger.

• status codes - EPICS status codes.

• iocLog- A system wide error logger supplied with base. It writes all messages to a system wide file.

NOTE: recGbl error routines are also provided. They in turn call one of the error message routines.

10.2 Error Message Routines

10.2.1 Basic Routines
 int errlogPrintf(const char *pformat, ...);
 int errlogVprintf(const char *pformat,va_list pvar);
 int errlogMessage(const char *message);
 void errlogFlush(void);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 125

Chapter 10: IOC Error Logging
Error Message Routines
errlogPrintf and errlogVprintf are like printf and vprintf provided by the standard C library, except
that the output is sent to the errlog task. Consult any book that describes the standard C library such as "The C
Programming Language ANSI C Edition" by Kernighan and Ritchie.

errlogMessage sends message to the errlog task.

errlogFlush wakes up the errlog task and then waits until all messages are flushed from the queue.

10.2.2 Log with Severity
typedef enum {

 errlogInfo,errlogMinor,errlogMajor,errlogFatal
 }errlogSevEnum;

 int errlogSevPrintf(const errlogSevEnum severity,
 const char *pformat, ...);
 int errlogSevVprintf(const errlogSevEnum severity,
 const char *pformat,va_list pvar);

 char *errlogGetSevEnumString(const errlogSevEnum severity);

 void errlogSetSevToLog(const errlogSevEnum severity);
 errlogSevEnum errlogGetSevToLog(void);

errlogSevPrintf and errlogSevVprintf are like errlogPrintf and errlogVprintf except that they
add the severity to the beginning of the message in the form "sevr=<value>" where value is on of "info, minor, major,
fatal". Also the message is suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumString gets the string value of severity.

errlogSetSevToLog sets the severity to log. errlogGetSevToLog gets the current severity to log.

10.2.3 Status Routines
void errMessage(long status, char *message);

 void errPrintf(long status, const char *pFileName,
 int lineno, const char *pformat, ...);

Routine errMessage (actually a macro that calls errPrintf) has the following format:

void errMessage(long status, char *message);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values” above.

errMessage, via a call to errPrintf, prints the message, the status symbol and string values, and the name of the task
which invoked errMessage. It also prints the name of the source file and the line number from which the call was
issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems provide routines built on
top of errMessage which generate descriptive messages.
126 EPICS IOC Application Developer’s Guide

Chapter 10: IOC Error Logging
errlog Task
An IOC global variable errVerbose, defined as an external in errMdef.h, specifies verbose messages. If
errVerbose is TRUE then errMessage should be called whenever an error is detected even if it is known that the
error belongs to a specific client. If errVerbose is FALSE then errMessage should be called only for errors that are
not caused by a specific client.

Routine errPrintf has the following format:

void errPrintf(long status, __FILE__, __LINE__,
char *fmtstring <arg1>, ...);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values”, above.

FILE and LINE are defined as:

• __FILE__ As shown or NULL if the file name and line number should not be printed.

• __LINE__ As shown

The remaining arguments are just like the arguments to the C printf routine. errVerbose determines if the filename
and line number are shown.

10.2.4 Obsolete Routines
int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatibility.

10.3 errlog Task
The error message routines can be called by any non-interrupt level code. These routines merely pass the message to the
errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by the errlog task. The
message queue uses a fixed block of memory to hold all messages. When the message queue is full additional messages
are rejected but a count of missed messages is kept. The next time the message queue empties an extra message about the
missed messages is generated.

The maximum message size is 256 characters. If a message is longer, the message is truncated and a message explaining
that it was truncated is appended. There is a chance that long messages corrupt memory. This only happens if client code
is defective. Long messages most likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just calls fprintf or vfprintf instead of
using a separate task and a message queue. Thus host messages are NOT sent to a system wide error logger.

10.3.1 Add and Remove Log Listener
typedef void(*errlogListener) (void *pvt,const char *message);

 void errlogAddListener(errlogListener listener,void *pPrivate);
 void errlogRemoveListener(errlogListener listener);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 127

Chapter 10: IOC Error Logging
Status Codes
These routines add/remove a callback that receives each error message. These routines are the interface to the actual
system wide error handlers.

10.3.2 target console routines
int eltc(int yesno); /* error log to console (0 or 1) */

 int errlogInit(int bufsize);

eltc determines if errlog task writes message to the console. During error messages storms this command can be used to
suppress console messages. A argument of 0 suppresses the messages and any other value lets the message go to the
console.

errlogInit can be used to initialize the error logging system with a larger buffer. The default is 1280 bytes. An extra
MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never used. This is a small extra protection against long
error messages.

10.4 Status Codes
EPICS defined status values provide the following features:

• Whenever possible, IOC routines return a status value: (0, non-0) means (OK, ERROR).

• The include files for each IOC subsystem contain macros defining error status symbols and strings.

• Routines are provided for run time access of the error status symbols and strings.

• A global variable errVerbose helps code decide if error messages should be generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning EPICS status values. No
consensus was reached.

Whenever it makes sense, IOC routines return a long word status value encoded similar to the vxWorks error status
encoding. The most significant short word indicates the subsystem module within which the error occurred. The low order
short word is a subsystem status value. In order that status values do not conflict with the vxWorks error status values all
subsystem numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For example the define for the database
access routines is:

#define M_dbAccess (501 << 16) \
/*Database Access Routines*/

Directory ”epics/share/epicsH” contains an include library for every IOC subsystem that returns standard status
values. The status values are encoded with lines of the following format:

#define S_xxxxxxx value /*string value*/

For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \
/*Invalid Database Request*/

For example, when dbGetField detects a bad database request type, it executes the statement:

return(S_dbAccessBadDBR);

The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }
128 EPICS IOC Application Developer’s Guide

Chapter 10: IOC Error Logging
iocLog
10.5 iocLog
This consists of two modules: iocLogServer and iocLogClient. The client code runs on each ioc and listens for the
messages generated by the errlog system. It also reports the messages from vxWorks logMsg.

10.5.1 iocLogServer

This runs on a host. It receives messages for all enabled iocLogClients in the local area network. The messages are written
to a file. Epics base provides a startup file "base/src/util/rc2.logServer", which is a shell script to start the server. Consult
this script for details.

10.5.2 iocLogClient

This runs on each ioc. It is started calling:

iocLogInit();

The global variable iocLogDisable can be used to enable/disable the messages from being sent to the server. Setting this
variable to (0,1) (enables,disables) the messages generation. If iocLogDisable is set to 1 immediately after iocCore is
loaded then iocLogClient will not even initialize itself.

10.5.3 Initialize Logging

Initialize the logging system. This system traps all logMsg calls and sends a copy to a Unix file. Note that this can be
disabled by issuing the command iocLogDisable=1 before issuing iocInit.

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a circular ASCII file on a PC or UNIX
workstation. Each entry in the log contains the IOC's DNS name, the date and time when the message was received by the
log server, and the text of the message generated on the IOC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in the log. Messages generated
by the vxWorks function logMsg() are also placed in the log (logMsg() can be safely called from interrupt level).
Messages generated by printf() do not end up in the log and are instead used primarily by diagnostic functions called from
the vxWorks shell.

To start a log server on a UNIX or PC workstation you must first set the following environment variables and then run the
executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular file and writes new
messages over old messages at the beginning of the file). If the value is zero then there is no limit on the size
of the log file.

EPICS_IOC_LOG_FILE_COMMAND
A shell command string used to obtain the log file path name during initialization and in response to
SIGHUP. The new path name will replace any path name supplied in EPICS_IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/" the log server will be stored
at "A/B/c.log"
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 129

Chapter 10: IOC Error Logging
iocLog
If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior is disabled. This feature was donated
to the collaboration by KECK, and it is used by them for switching to a new directory at a fixed time each
day. This variable is currently used only by the UNIX version of the log server.

EPICS_IOC_LOG_PORT
THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment variable
EPICS_IOC_LOG_INET to the IP address of the host that is running the log server and EPICS_IOC_LOG_PORT to the
TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/CONFIG_SITE_ENV and
$(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on other host architectures.

10.5.4 Configuring a Private Log Server

In a testing environment it is desirable to use a private log server. This can be done as follows:

• Add a epicsEnvSet command to your IOC startup file. For example
ld < iocCore
epicsEnvSet("EPICS_IOC_LOG_INET=xxx.xxx.xxx.xxx")

The inet address is for your host workstation.

• On you host start a version of the log server.
130 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support

MARTY WHERE DOES THIS GO

> The UDF field means Undefined, i.e. the VAL field has never been given a value.

> When records are loaded into an ioc this is the initial state of records.

> Whevever code gives a value to the VAL field it is also supposed to set UDF

> false. Unless a particular record type has unusual semantics no code should set

> UDF true. UDF normally means that the field was never given a value.

>

> For input records device support is responsible for obtaining an input value. If

> no input value can be obtained neither record support nor device support sets

> UDF false. If device support reads a raw value it returns a value telling record

> support to perform a conversion. After the record support sets VAL equal to the

> converted value, it sets UDF false. If device support obtains a converted value

> that it writes to VAL, it sets UDF false.

>

> For output records either something outside record/device support writes to the

> VAL field or else VAL is given a value because record support obtains a value

> via the OMSL field. In either case the code that writes to the VAL field sets

> UDF false.

>

> As for raising alarms, recGblSetSevr is the routine that must be called to raise

> alarms. It can be called by iocCore, record support, or device support. The code

> that detects an alarm is responsible for raising the alarm. Thus if device

> support detects an alarm condition it is responsible for calling recGblSetSevr.

11.1 Overview
The purpose of this chapter is to describe record support in sufficient detail such that a C programmer can write new
record support modules. Before attempting to write new support modules, you should carefully study a few of the existing
support modules. If an existing support module is similar to the desired module most of the work will already be done.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 131

Chapter 11: Record Support
Overview of Record Processing
From previous chapters, it should be clear that many things happen as a result of record processing. The details of what
happens are dependent on the record type. In order to allow new record types and new device types without impacting the
core IOC system, the concept of record support and device support has been created. For each record type, a record
support module exists. It is responsible for all record specific details. In order to allow a record support module to be
independent of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines that can be called by database access routines. This set of
routines implements record specific code. Each record type can define a standard set of device support routines specific to
that record type.

By far the most important record support routine is process, which dbProcess calls when it wants to process a
record. This routine is responsible for the details of record processing. In many cases it calls a device support I/O routine.
The next section gives an overview of what must be done in order to process a record. Next is a description of the entry
tables that must be provided by record and device support modules. The remaining sections give example record and
device support modules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record specific include files as
defined in base/rec. Thus they are the only routines that access record specific fields without going through database
access.

11.2 Overview of Record Processing
The most important record support routine is process. This routine determines what record processing means. Before
the record specific “process” routine is called, the following has already been done:

• Decision to process a record.

• Check that record is not active, i.e. pact must be FALSE.

• Check that the record is not disabled.

The process routine, together with its associated device support, is responsible for the following tasks:

• Set record active while it is being processed

• Perform I/O (with aid of device support)

• Check for record specific alarm conditions

• Raise database monitors

• Request processing of forward links

A complication of record processing is that some devices are intrinsically asynchronous. It is NEVER permissible to wait
for a slow device to complete. Asynchronous records perform the following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the I/O operation complete record processing

5. Set pact FALSE and return

The examples given below show how this can be done.
132 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Record Support and Device Support Entry Tables
11.3 Record Support and Device Support Entry Tables
Each record type has an associated set of record support routines. These routines are located via the data structures
defined in epics/share/epicsH/recSup.h. The concept of record support routines isolates the iocCore software
from the details of each record type. Thus new records can be defined and supported without affecting the IOC core
software.

Each record type also has zero or more sets of device support routines. Record types without associated hardware, e.g.
calculation records, normally do not have any associated device support. Record types with associated hardware normally
have a device support module for each device type. The concept of device support isolates IOC core software and even
record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the same for every record type.
These routines are located via a Record Support Entry Table (RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;

};

Each record support module must define its RSET. The external name must be of the form:

<record_type>RSET

Any routines not needed for the particular record type should be initialized to the value NULL. Look at the example below
for details.

Device support routines are located via a Device Support Entry Table (DSET), which has the following structure:

struct dset { /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/

};

Each device support module must define its associated DSET. The external name must be the same as the name which
appears in devSup.ascii.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 133

Chapter 11: Record Support
Example Record Support Module
Any record support module which has associated device support must also include definitions for accessing its associated
device support modules. The field”dset”, which is located in dbCommon, contains the address of the DSET. It is given a
value by iocInit.

11.4 Example Record Support Module
This section contains the skeleton of a record support package. The record type is xxx and the record has the following
fields in addition to the dbCommon fields: VAL, PREC, EGU, HOPR, LOPR, HIHI, LOLO, HIGH, LOW, HHSV, LLSV, HSV,
LSV, HYST, ADEL, MDEL, LALM, ALST, MLST. These fields will have the same meaning as they have for the ai record.
Consult the Record Reference manual for a description.

11.4.1 Declarations
/* Create RSET - Record Support Entry Table*/
#define report NULL
#define initialize NULL
static long init_record();
static long process();
#define special NULL
#define get_value NULL
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();
static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxRSET={
RSETNUMBER,
report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
134 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */

long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure, success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;

}xxxdset;

/* forward declaration for internal routines*/
static void checkAlarams(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the associated Device Support
Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support routines supplied for this
record type. Note that forward declarations are given for all routines supported and a NULL declaration for any routine not
supported.

The template for the DSET is declared for use by this module.

11.4.2 init_record
static long init_record(void *precord, int pass)
{

xxxRecord*pxxx = (xxxRecord *)precord;
xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,”xxx: init_record”);
return(S_dev_noDSET);

}
/* must have read_xxx function defined */
if((pdset->number < 5) || (pdset->read_xxx == NULL)) {

recGblRecordError(S_dev_missingSup,pxxx,
”xxx: init_record”);

return(S_dev_missingSup);
}
if(pdset->init_record) {

if((status=(*pdset->init_record)(pxxx))) return(status);
}
return(0);

}

This routine, which is called by iocInit twice for each record of type xxx, checks to see if it has a proper set of device
support routines and, if present, calls the init_record entry of the DSET.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 135

Chapter 11: Record Support
Example Record Support Module
During the first call to init_record (pass=0) only initializations relating to this record can be performed. During the
second call (pass=1) initializations that may refer to other records can be performed. Note also that during the second
pass, other records may refer to fields within this record. A good example of where these rules are important is a
waveform record. The VAL field of a waveform record actually refers to an array. The waveform record support module
must allocate storage for the array. If another record has a database link referring to the waveform VAL field then the
storage must be allocated before the link is resolved. This is accomplished by having the waveform record support
allocate the array during the first pass (pass=0) and having the link reference resolved during the second pass (pass=1).

11.4.3 process
static long process(void *precord)
{

xxxRecord*pxxx = (xxxRecord *)precord;
 xxxdset *pdset = (xxxdset *)pxxx->dset;

long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”read_xxx”);
return(S_dev_missingSup);

}

/* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
 /* return if beginning of asynch processing*/
if(!pact && pxxx->pact) return(0);
pxxx->pact = TRUE;
recGblGetTimeStamp(pxxx);

/* check for alarms */
alarm(pxxx);
/* check event list */
monitor(pxxx);
/* process the forward scan link record */
recGblFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific process routine is called by
dbProcesswhenever it decides that a record should be processed. Process decides what record processing really means.
The above is a good example of what should be done. In addition to being called by dbProcess the process routine may
also be called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For example, if read_xxx is an
asynchronous routine, the following sequence of events will occur:

• process is called with pact FALSE

• read_xxx is called. Since pact is FALSE it starts I/O, arranges callback, and sets pact TRUE

• read_xxx returns
136 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module
• because pact went from FALSE to TRUE process just returns

• Any new call to dbProcess is ignored because it finds pact TRUE

• Sometime later the callback occurs and process is called again.

• read_xxx is called. Since pact is TRUE it knows that it is a completion request.

• read_xxx returns

• process completes record processing

• pact is set FALSE

• process returns

At this point the record has been completely processed. The next time process is called everything starts all over from
the beginning.

11.4.4 Miscellaneous Utility Routines
static long get_units(DBADDR *paddr, char *units)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
int fieldIndex = dbGetFieldIndex(paddr);

if(fieldIndex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;

} else recGblGetGraphicDouble(paddr,pgd);
return(0);

}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support package. The functions that must be
performed by the remaining routines are described in the next section.

11.4.5 Alarm Processing
static void checkAlarms(xxxRecord *pxxx)
{

double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,llsv,hsv,lsv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 137

Chapter 11: Record Support
Example Record Support Module
}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->llsv;
hsv=pxxx->hsv; lsv=pxxx->lsv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
|| ((lalm==hihi) && (val >= hihi-hyst)))) {

if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
 pxxx->lalm = hihi;

return;
}
/* alarm condition lolo */
if (llsv && (val <= lolo
|| ((lalm==lolo) && (val <= lolo+hyst)))) {

if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->llsv))
pxxx->lalm = lolo;

return;
}
/* alarm condition high */
if (hsv && (val >= high
|| ((lalm==high) && (val >= high-hyst)))) {

if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;

return;
}
/* alarm condition low */
if (lsv && (val <= low
|| (lalm==low) && (val <= low+hyst)))) {

if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->lsv))
pxxx->lalm = low;

return;
}
/*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val;
return;

}

This is a typical set of code for checking alarms conditions for an analog type record. The actual set of code can be very
record specific. Note also that other parts of the system can raise alarms. The algorithm is to always maximize alarm
severity, i.e. the highest severity outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm storms from occurring in the
event that the current value is very near an alarm limit and noise makes it continually cross the limit. It honors the
hysteresis only when the value is going to a lower alarm severity.

Note the test:

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

138 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module
Database common defines the field UDF, which means that field VAL is undefined. The STAT and SEVR fields are
initialized as though recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM)was called. Thus if the record is never
processed the record will be in an INVALID UNDEFINED alarm state. Field UDF is initialized to the value 1, i.e. TRUE.
Thus the above code will keep the record in the INVALID UNDEFINED alarm state as long as UDF is not given the
value 0.

Any code that changes field VAL is expected to set UDF to the value 0. Database Access does this if it writes changes
VAL. Record and device support are also expected to set UDF to 0 whenever they change VAL.

11.4.6 Raising Monitors
static void monitor(xxxRecord *pxxx)
{

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {

/* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pxxx->mlst = pxxx->val;

}
/* check for archive change */
delta = pxxx->alst - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {

/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

}
/* send out monitors connected to the value field */
if (monitor_mask){

db_post_events(pxxx,&pxxx->val,monitor_mask);
}
return;

}

All record types should call recGblResetAlarms as shown. Note that nsta and nsev will have the value 0 after this
routine completes. This is necessary to ensure that alarm checking starts fresh after processing completes. The code also
takes care of raising alarm monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this example.

db_post_events results in channel access issuing monitors for clients attached to the record and field. The call is

int db_post_events(void *precord, void *pfield,
 unsigned int monitor_mask)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 139

Chapter 11: Record Support
Record Support Routines
where:

precord - The address of the record
pfield - The address of the field
monitor_mask - A bit mask that can be any combinations of the following:

DBE_ALARM - A change of alarm state has occured. This is set by recGblResetAlarms.
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT: The record support module is responsible for calling db_post_event for any fields that change as a
result of record processing. Also it should NOT call db_post_event for fields that do not change.

11.5 Record Support Routines
This section describes the routines defined in the RSET. Any routine that does not apply to a specific record type must be
declared NULL.

11.5.1 Generate Report of Each Field in Record
report(void *precord); /* addr of record*/

This routine is not used by most record types. Any action is record type specific.

11.5.2 Initialize Record Processing
initialize(void);

This routine is called once at IOC initialization time. Any action is record type specific. Most record types do not need
this routine.

11.5.3 Initialize Specific Record
init_record(

void *precord, /* addr of record*/
int pass);

iocInit calls this routine twice (pass=0 and pass=1) for each database record of the type handled by this routine. It
must perform the following functions:

• Check and/or issue initialization calls for the associated device support routines.

• Perform any record type specific initialization.

• During the first pass it can only perform initializations that affect the record referenced by precord.

• During the second pass it can perform initializations that affect other records.

11.5.4 Process Record
process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.
140 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Record Support Routines
11.5.5 Special Processing
special(

struct dbAddr *paddr,
int after);/*(FALSE,TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referred to by dbAddr. Note that it is
called twice. Once before any changes are made to the associated field and once after. File special.h defines special
types. This routine is only called for user special fields, i.e. fields with SPC_xxx >= 100. A field is declared special in the
ASCII record definition file. New values should not by added to special.h, instead use SPC_MOD.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.6 Get Value

This routine is no longer used. It should be left as a NULL procedure in the record support entry table.

11.5.7 Convert dbAddr Definitions
cvt_dbaddr(struct dbAddr *paddr);

This routine is called by dbNameToAddr if the field has special set equal to SPC_DBADDR. A typical use is when a field
refers to an array. This routine can change any combination of the dbAddr fields: no_elements, field_type,
field_size, special,pfield, and dbr_type. For example if the VAL field of a waveform record is passed to
dbNameToAddr, cvt_dbaddr would change dbAddr so that it refers to the actual array rather then VAL.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

NOTES:

• Channel access calls db_name_to_addr, which is part of old database access. Db_name_to_addr calls
dbNameToAddr. This is done when a client connects to the record.

• no_elements must be set to the maximum number of elements that will ever be stored in the array.

11.5.8 Get Array Information
get_array_info(

struct dbAddr *paddr,
long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value of the specified array. The offset field
is meaningful if the array is actually a circular buffer.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified. It is
permissible for get_array_info to change pfield. This feature can be used to implement double buffering.

When an array field is being written get_array_info is called before the field values are changed.

11.5.9 Put Array Information
put_array_info(

struct dbAddr *paddr,
long nNew);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 141

Chapter 11: Record Support
Record Support Routines
This routine is called after new values have been placed in the specified array.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.10 Get Units
get_units(

struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.11 Get Precision
get_precision(

struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to convert the field value to an ASCII
string. recGblGetPrec should be called for fields not directly related to the value field.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.12 Get Enumerated String
get_enum_str(

struct dbAddr *paddr,
char *p);

This routine sets *p equal to the ASCII string for the field value. The field must have type DBF_ENUM.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.13 Get Strings for Enumerated Field
get_enum_strs(

struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structure dbr_enumStrs.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.14 Put Enumerated String
put_enum_str(

struct dbAddr *paddr,
char *p);
142 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Global Record Support Routines
Given an ASCII string, this routine updates the database field. It compares the string with the string values associated with
each enumerated value and if it finds a match sets the database field equal to the index of the string which matched.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.15 Get Graphic Double Information
get_graphic_double(

struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr_grDouble. recGblGetGraphicDouble should be
called for fields not directly related to the value field.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.16 Get Control Double Information
get_control_double(

struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to all fields of structure dbr_ctrlDouble. recGblGetControlDouble should be called
for fields not directly related to the value field.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.5.17 Get Alarm Double Information
get_alarm_double(

struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structure dbr_alDouble.

The database access routine, dbGetFieldIndex can be used to determine which field is being modified.

11.6 Global Record Support Routines
A number of global record support routines are available. These routines are intended for use by the record specific
processing routines but can be called by any routine that wishes to use their services.

The name of each of these routines begins with ”recGbl”.

11.6.1 Alarm Status and Severity

Alarms may be raised in many different places during the course of record processing. The algorithm is to maximize the
alarm severity, i.e. the highest severity outstanding alarm is raised. If more than one alarm of the same severity is found
then the first one is reported. This means that whenever a code fragment wants to raise an alarm, it does so only if the
alarm severity it will declare is greater then that already existing. Four fields (in database common) are used to implement
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 143

Chapter 11: Record Support
Global Record Support Routines
alarms: sevr, stat, nsev, and nsta. The first two are the status and severity after the record is completely processed.
The last two fields (nsta and nsev) are the status and severity values to set during record processing. Two routines are
used for handling alarms. Whenever a routine wants to raise an alarm it calls recGblSetSevr. This routine will only
change nsta and nsev if it will result in the alarm severity being increased. At the end of processing, the record support
module must call recGblResetAlarms. This routine sets stat=nsta, sevr=nsev, nsta=0, and nsev=0. If stat
or sevr has changed value since the last call it calls db_post_event for stat and sevr and returns a value of
DBE_ALARM. If no change occured it returns 0. Thus after calling recGblResetAlarms everything is ready for raising
alarms the next time the record is processed. The example record support module presented above shows how these
macros are used.

recGblSetSevr(
void *precord,
short nsta,
short nsevr);

Returns: (TRUE, FALSE) if (did, did not) change nsta and nsev.

unsigned short recGblResetAlarms(void *precord);

Returns: Initial value for monitor_mask

11.6.2 Alarm Acknowledgment

Database common contains two additional alarm related fields: acks (Highest severity unacknowledged alarm) and
ackt (does transient alarm need to be acknowledged). These field are handled by iocCore and recGblResetAlarms
and are not the responsibility of record support. These fields are intended for use by the alarm handler.

11.6.3 Generate Error: Process Variable Name, Caller, Message

SUGGESTION: use epicsPrintf instead of this for new code.

recGblDbaddrError(
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: Status
information, process variable name, calling routine.

11.6.4 Generate Error: Status String, Record Name, Caller
SUGGESTION: use epicsPrintf instead of this for new code.

recGblRecordError(
long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine.

11.6.5 Generate Error: Record Name, Caller, Record Support Message
SUGGESTION: use epicsPrintf instead of this for new code.
144 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Global Record Support Routines
recGblRecsupError(
long status,
struct dbAddr *paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine, record support entry name.

11.6.6 Get Graphics Double
recGblGetGraphicDouble(

struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by the get_graphic_double record support routine to obtain graphics values for fields that it
doesn’t know how to set.

11.6.7 Get Control Double
recGblGetControlDouble(

struct dbAddr *paddr,
struct dbr_ctrlDouble *pcd);

This routine can be used by the get_control_double record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.8 Get Alarm Double
recGblGetAlarmDouble(

struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by the get_alarm_double record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.9 Get Precision
recGblGetPrec(

struct dbAddr *paddr,
long *pprecision);

This routine can be used by the get_precision record support routine to obtain the precision for fields that it doesn’t
know how to set the precision.

11.6.10 Get Time Stamp
recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 145

Chapter 11: Record Support
Global Record Support Routines
11.6.11 Forward link
recGblFwdLink(

void *precord);

This routine can be used by process to request processing of forward links.

11.6.12 Initialize Constant Link
 int recGblInitConstantLink(

struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called by init_record (or by associated device support) to initialize
the field associated with a constant link. It returns(FALSE, TRUE) if it (did not, did) modify the destination.
146 EPICS IOC Application Developer’s Guide

Chapter 12: Device Support

12.1 Overview
In addition to a record support module, each record type can have an arbitrary number of device support modules. The
purpose of device support is to hide hardware specific details from record processing routines. Thus support can be
developed for a new device without changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to the hardware directly or how
to call a device driver which interfaces to the hardware. Thus device support routines are the interface between hardware
specific fields in a database record and device drivers or the hardware itself.

Database common contains two device related fields:

• dtyp: Device Type.

• dset: Address of Device Support Entry Table.

The field dtyp contains the index of the menu choice as defined by the device ASCII definitions. iocInit uses this field
and the device support structures defined in devSup.h to initialize the field dset. Thus record support can locate its
associated device support via the dset field.

Device support modules can be divided into two basic classes: synchronous and asynchronous. Synchronous device
support is used for hardware that can be accessed without delays for I/O. Many register based devices are synchronous
devices. Other devices, for example all GPIB devices, can only be accessed via I/O requests that may take large amounts
of time to complete. Such devices must have associated asynchronous device support. Asynchronous device support
makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous device support is appropriate.
If a device causes delays of greater than 100 microseconds then asynchronous device support is appropriate. If the delay is
between these values your guess about what to do is as good as mine. Perhaps you should ask the hardware designer why
such a device was created.

If a device takes a long time to accept requests there is another option than asynchronous device support. A driver can be
created that periodically polls all its attached input devices. The device support just returns the latest polled value. For
outputs, device support just notifies the driver that a new value must be written. the driver, during one of its polling phases,
writes the new value. The EPICS Allen Bradley device/driver support is a good example.

12.2 Example Synchronous Device Support Module
/* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 147

Chapter 12: Device Support
Example Synchronous Device Support Module
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

}devAiSoft={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

static long init_record(void *precord)
{

aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {

case (CONSTANT) :
recGblInitConstantLink(&pai->inp,

DBF_DOUBLE,&pai->val);
break;

case (PV_LINK) :
case (DB_LINK) :
case (CA_LINK) :

break;
default :

recGblRecordError(S_db_badField, (void *)pai,
”devAiSoft (init_record) Illegal INP field”);

return(S_db_badField);
}
/* Make sure record processing routine does not perform any conversion*/
pai->linr=0;
return(0);

}

static long read_ai(void *precord)
{

aiRecord*pai =(aiRecord *)precord;
long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);
return(2); /*don’t convert*/

}

148 EPICS IOC Application Developer’s Guide

Chapter 12: Device Support
Example Asynchronous Device Support Module
The example is devAiSoft, which supports soft analog inputs. The INP field can be a constant or a database link or a
channel access link. Only two routines are provided (the rest are declared NULL). The init_record routine first checks
that the link type is valid. If the link is a constant it initializes VAL If the link is a Process Variable link it calls
dbCaGetLink to turn it into a Channel Access link. The read_ai routine obtains an input value if the link is a database
or Channel Access link, otherwise it doesn’t have to do anything.

12.3 Example Asynchronous Device Support Module
This example shows how to write an asynchronous device support routine. It does the following sequence of operations:

1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called after a number of
seconds specified by the VAL field. callbackRequest is an EPICS supplied routine. The watchdog timer
routines are supplied by vxWorks.

2. It prints a message stating that processing has started, sets pact TRUE, and returns. The record processing routine
returns without completing processing.

3. When the specified time elapses myCallback is called. It locks the record, calls process, and unlocks the
record. It calls the process entry of the record support module, which it locates via the rset field in dbCommon,
directly rather than dbProcess. dbProcess would not call process because pact is TRUE.

4. When process executes, it again calls read_ai. This time pact is TRUE.

5. read_ai prints a message stating that record processing is complete and returns a status of 2. Normally a value of
0 would be returned. The value 2 tells the record support routine not to attempt any conversions. This is a
convention (a bad convention!) used by the analog input record.

6. When read_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called everything starts all over.

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiTestAsyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
typedef struct myCallback {

CALLBACK callback;
sruct dbCommon *precord;
WDOG_ID wd_id;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 149

Chapter 12: Device Support
Example Asynchronous Device Support Module
}myCallback;

static void myCallback(CALLBACK *pcallback)
{
 dbCommon *precord;
 struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

}

static long init_record(void *precord)
{
 aiRecord *pai = (aiRecord *)precord;
 myCallback *pcallback;

 /* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

”devAiTestAsyn (init_record) Illegal INP field”);
return(S_db_badField);

}
return(0);

}

static long read_ai(void *precord)
{

aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

if(pai->pact) {
printf(”%s Completed\n”,pai->name);
return(2); /* don‘t convert*/

} else {
150 EPICS IOC Application Developer’s Guide

Chapter 12: Device Support
Device Support Routines
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,&pcallback->callback);
printf(”%s Starting asynchronous processing\n”,

pai->name);
wdStart(pcallback->wd_id,wait_time,

(FUNCPTR)callbackRequest,
(int)&pcallback->callback);

pai->pact = TRUE;
return(0);

}
default :

if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat!=SOFT_ALARM) {

recGblRecordError(S_db_badField, (void *)pai,
”devAiTestAsyn (read_ai) Illegal INP field”);

}
}

}
return(0);

}

12.4 Device Support Routines
This section describes the routines defined in the DSET. Any routine that does not apply to a specific record type must be
declared NULL.

12.4.1 Generate Device Report
report(

int interest);

This routine is responsible for reporting all I/O cards it has found. If interest is (0,1) then generate a (short, long)
report. If a device support module is using a driver, it normally does not have to implement this routine because the driver
generates the report.

12.4.2 Initialize Record Processing
init(

int after);

This routine is called twice at IOC initialization time. Any action is device specific. This routine is called twice: once
before any database records are initialized and once after all records are initialized but before the scan tasks are started.
after has the value (0,1) (before, after) record initialization.

12.4.3 Initialize Specific Record
init_record(

void *precord); /* addr of record*/
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 151

Chapter 12: Device Support
Device Support Routines
The record support init_record routine calls this routine.

12.4.4 Get I/O Interrupt Information
get_ioint_info(

int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task. If cmd is (0,1) then this routine is being called when the associated record is
being (placed in, taken out of) an I/O scan list. See the chapter on scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not described in this document
because, hopefully, it will go away in the near future. When it calls this routine the arguments have completely different
meanings.

12.4.5 Other Device Support Routines

All other device support routines are record type specific.
152 EPICS IOC Application Developer’s Guide

Chapter 13: Driver Support

13.1 Overview
It is not necessary to create a driver support module in order to interface EPICS to hardware. For simple hardware device
support is sufficient. At the present time most hardware support has both. The reason for this is historical. Before EPICS
there was GTACS. During the change from GTACS to EPICS, record support was changed drastically. In order to
preserve all existing hardware support the GTACS drivers were used without change. The device support layer was
created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do I need driver support and when don’t I?
Lets give a few reasons why drivers should be created.

• The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for accessing the subnet.
There is no reason to make the driver aware of EPICS except possibly for issuing error messages.

• The hardware is complicated. In this case supplying driver support helps modularized the software. The Allen
Bradley driver, which is also an example of supporting a subnet, is a good example.

• An existing driver, maintained by others, is available. I don’t know of any examples.

• The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a good example. It is used by
other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module, which can be layered on top of
an existing driver, and provide a database definition for the driver. The driver support module is described in the next
section. The database definition is described in chapter “Database Definition”.

13.2 Device Drivers
Device drivers are modules that interface directly with the hardware. They are provided to isolate device support routines
from details of how to interface to the hardware. Device drivers have no knowledge of the internals of database records.
Thus there is no necessary correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs, binary inputs, and binary
outputs.

In general only device support routines know how to call device drivers. Since device support varies widely from device to
device, the set of routines provided by a device driver is almost completely driver dependent. The only requirement is that
routines report and init must be provided. Device support routines must, of course, know what routines are provided
by a driver.

File drvSup.h describes the format of a driver support entry table. The driver support module must supply a driver entry
table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {

 long number;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 153

Chapter 13: Driver Support
Device Drivers
 DRVSUPFUN report;
 DRVSUPFUN init;

} drvAb={
 2,
 report,
 init

};

The above example is for the Allen Bradley driver. It has an associated ascii definition of:

driver(drvAb)

Thus it is seen that the driver support module should supply two EPICS callable routines: int and report.

13.2.0.1 init

This routine, which has no arguments, is called by iocInit. The driver is expected to look for and initialize the
hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
{

 return(ab_driver_init());
}

13.2.0.2 report

The report routine is called by the dbior, an IOC test routine. It is responsible for producing a report describing the
hardware it found at init time. It is passed one argument, level, which is a hint about how much information to display. An
example, taken from Allen Bradley, is:

LOCAL long report(int level)
{

 return(ab_io_report(level));
}

Guidelines for level are as follows:

Level=0 Display a one line summary for each device
Level=1 Display more information
Level=2 Display a lot of information. It is even permissible to

prompt for what is wanted.

13.2.0.3 Hardware Configuration

Hardware configuration includes the following:

• VME/VXI address space

• VME Interrupt Vectors and levels

• Device Specific Information

The information contained in hardware links supplies some but not all configuration information. In particular it does not
define the VME/VXI addresses and interrupt vectors. This additional information is what is meant by hardware
configuration in this chapter.

The problem of defining hardware configuration information is an unsolved problem for EPICS. At one time
configuration information was defined in module_types.h Many existing device/driver support modules still uses this
method. It should NOT be used for any new support for the following reasons:

• There is no way to manage this file for the entire EPICS community.
154 EPICS IOC Application Developer’s Guide

Chapter 13: Driver Support
Device Drivers
• It does not allow arbitrary configuration information.

• It is hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used in each IOC makes the
configuration problem much more manageable than previously. Previously if you wanted to support a new VME modules
it was necessary to pick addresses that nothing in module_types.h was using. Now you only have to check modules
you are actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal guidelines should be used:

• Never use #define to specify things like VME addresses. Instead use variables and assign default values. Allow
the default values to be changed before iocInit is executed. The best way is to supply a global routine that can be
invoked from the IOC startup file. Note that all arguments to such routines should be one of the following:

int
char *
double

• Call the routines described in chapter “Device Support Library” whenever possible.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 155

Chapter 13: Driver Support
Device Drivers
156 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access

14.1 Overview
An IOC database is created on a Unix system via a Database Configuration Tool and stored in a Unix file. EPICS provides
two sets of database access routines: Static Database Access and Runtime Database Access. Static database access can be
used on Unix or IOC database files. Runtime database requires an initialized IOC databases. Static database access is
described in this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity is hidden. DBF_MENU and
DBF_DEVICE fields are accessed via a common type called DCT_MENU. A set of routines are provided to simplify access
to link fields. All fields can be accessed as character strings. This interface is called static database access because it can
be used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must be read via
dbReadDatabase or dbReadDatabaseFP. These routines, which are also used to load record instances, can be
called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static database access interface.
An IOC database is created on a Unix system via a database configuration tool and stored in a Unix file with a file
extension of ”.db”. Three routines (dbReadDatabase, dbReadDatabaseFP and dbWriteRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS database. All other access
routines manipulate the memory resident database.

An include file dbStaticLib.h contains all the definitions needed to use the static database access library. Two
structures (DBBASE and DBENTRY) are used to access a database. The fields in these structures should not be accessed
directly. They are used by the static database access library to keep state information for the caller.

14.2 Definitions

14.2.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide definitions in the form:

DBBASE *pdbbase;

14.2.2 DBENTRY

A typical declaration for a database entry structure is:

DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);

Most static access to a database is via a DBENTRY structure. As many DBENTRYs as desired can be allocated.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 157

Chapter 14: Static Database Access
Allocating and Freeing DBBASE
The user should NEVER access the fields of DBENTRY directly. They are meant to be used by the static database access
library.

Most static access routines accept an argument which contains the address of a DBENTRY. Each routine uses this structure
to locate the information it needs and gives values to as many fields in this structure as possible. All other fields are set to
NULL.

14.2.3 Field Types

Each database field has a type as defined in the next chapter. For static database access a new and simpler set of field types
are defined. In addition, at runtime, a database field can be an array. With static database access, however, all fields are
scalars. Static database access field types are called DCT field types.

The DCT field types are:

• DCT_STRING: Character string.

• DCT_INTEGER: Integer value

• DCT_REAL: Floating point number

• DCT_MENU: A set of choice strings

• DCT_MENUFORM: A set of choice strings with associated form.

• DCT_INLINK: Input Link

• DCT_OUTLINK: Output Link

• DCT_FWDLINK: Forward Link

• DCT_NOACCESS: A private field for use by record access routines

A DCT_STRING field contains the address of a NULL terminated string. The field types DCT_INTEGER and DCT_REAL
are used for numeric fields. A field that has any of these types can be accessed via the dbGetString, dbPutString,
dbVerify, and dbGetRange routines.

The field type DCT_MENU has an associated set of strings defining the choices. Routines are available for accessing menu
fields. A menu field can also be accessed via the dbGetString, dbPutString, dbVerify, and dbGetRange
routines.

The field type DCT_MENUFORM is like DCT_MENU but in addition the field has an associated link field. The information
for the link field can be entered via a set of form manipulation fields.

DCT_INLINK (input), DCT_OUTLINK (output), and DCT_FWDLINK (forward) specify that the field is a link, which has
an associated set of static access routines described in the next subsection. A field that has any of these types can also be
accessed via the dbGetString, dbPutString, dbVerify, and dbGetRange routines.

14.3 Allocating and Freeing DBBASE

14.3.1 dbAllocBase
DBBASE *dbAllocBase(void);

This routine allocates and initializes a DBBASE structure. It does not return if it is unable to allocate storage.

dbAllocBase allocates and initializes a DBBASE structure. Normally an application does not need to call
dbAllocBase because a call to dbReadDatabase or dbReadDatabaseFP automatically calls this routine if
pdbbase is null. Thus the user only has to supply code like the following:
158 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
DBENTRY Routines
DBBASE *pdbbase=0;
...
status = dbReadDatabase(&pdbbase,"sample.db",

"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases, each referenced via a different
(DBBASE *) pointer. Such applications may find it necessary to call dbAllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

14.3.2 dbFreeBase
void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database reference by pdbbase including the DBBASE structure itself.

14.4 DBENTRY Routines

14.4.1 Alloc/Free DBENTRY
DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and free DBENTRY structures. The user can allocate and free DBENTRY structures as
necessary. Each DBENTRY is, however, tied to a particular database.

dbAllocEntry and dbFreeEntry act as a pair, i.e. the user calls dbAllocEntry to create a new DBENTRY and
calls dbFreeEntry when done.

14.4.2 dbInitEntry dbFinishEntry
void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routines dbInitEntry and dbFinishEntry are provided in case the user wants to allocate a DBENTRY structure
on the stack. Note that the caller MUST call dbFinishEntry before returning from the routine that calls
dbInitEntry. An example of how to use these routines is:

int xxx(DBBASE *pdbbase)
{

DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
...
dbInitEntry(pdbbase,pdbentry);
...
dbFinishEntry(pdbentry);

}

14.4.3 dbCopyEntry
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 159

Chapter 14: Static Database Access
Read and Write Database
dbCopyEntry
Contents

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine dbCopyEntry allocates a new entry, via a call to dbAllocEntry, copies the information from the original
entry, and returns the result. The caller must free the entry, via dbFreeEntry when finished with the DBENTRY.

The routine dbCopyEntryContents copies the contents of pfrom to pto. Code should never perform structure copies.

14.5 Read and Write Database

14.5.1 Read Database File
long dbReadDatabase(DBBASE **ppdbbase,const char *filename,

char *path, char *substitutions);
long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,

char *path, char *substitutions);
long dbPath(DBBASE *pdbbase,const char *path);
long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase and dbReadDatabaseFP both read a file containing database definitions as described in chapter
“Database Definitions”. If *ppdbbase is NULL, dbAllocBase is automatically invoked and the return address
assigned to *pdbbase. The only difference between the two routines is that one accepts a file name and the other a "FILE
*". Any combination of these routines can be called multiple times. Each adds definitions with the rules described in
chapter “Database Definitions”.

The routines dbPath and dbAddPath specify paths for use by include statements in database definition files. These are
not normally called by user code.

14.5.2 Write Database Definitons
long dbWriteMenu(DBBASE *pdbbase,char *filename,

char *menuName);
long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,

char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,

char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,

const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);
160 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Record Types
Each of these routines writes files in the same format accepted by dbReadDatabase and dbReadDatabaseFP. Two
versions of each type are provided. The only difference is that one accepts a filename and the other a "FILE *". Thus only
one of each type has to be described.

dbWriteMenu writes the description of the specified menu or, if menuName is NULL, the descriptions of all menus.

dbWriteRecordType writes the description of the specified record type or, if recordTypeName is NULL, the
descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

14.5.3 Write Record Instances
long dbWriteRecord(DBBASE *pdbbase,char * file,

char *precordTypeName,int level);
long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,

char *precordTypeName,int level);

Each of these routines writes files in the same format accepted by dbReadDatabase and dbReadDatabaseFP. Two
versions of each type are provided. The only difference is that one accepts a filename and the other a “FILE *”. Thus only
one of each type has to be described.

dbWriteRecord writes record instances. If precordTypeName is NULL, then the record instances for all record
types are written, otherwise only the records for the specified type are written. level has the following meaning:

• 0 - Write only prompt fields that are different than the default value.

• 1 - Write only the fields which are prompt fields.

• 2 - Write the values of all fields.

14.6 Manipulating Record Types

14.6.1 Get Number of Record Types
int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

14.6.2 Locate Record Type
long dbFindRecordType(DBENTRY *pdbentry,

char *recordTypeName);
long dbFirstRecordType(DBENTRY *pdbentry);
long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record type. dbFirstRecordType locates the first, in alphabetical order,
record type. Given that DBENTRY points to a particular record type, dbNextRecordType locates the next record type.
Each routine returns 0 for success and a non zero status value for failure. A typical code segment using these routines is:

status = dbFirstRecordType(pdbentry);
while(!status) {
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 161

Chapter 14: Static Database Access
Manipulating Field Descriptions
/*Do something*/
status = dbNextRecordType(pdbentry)
}

14.6.3 Get Record Type Name
char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This routine should only be called
after a successful call to dbFindRecordType, dbFirstRecordType, or dbNextRecordType. It returns NULL if
DBENTRY does not point to a record description.

14.7 Manipulating Field Descriptions
The routines described in this section all assume that DBENTRY references a record type, i.e. that
dbFindRecordType, dbFirstRecordType, or dbNextRecordType has returned success or that a record instance
has been successfully located.

14.7.1 Get Number of Fields
int dbGetNFields(DBENTRY *pdbentry,int dctonly);

Returns the number of fields for the record instance that DBENTRY currently references.

14.7.2 Locate Field
long dbFirstField(DBENTRY *pdbentry,int dctonly);
long dbNextField(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then DBENTRY references that field
description.

14.7.3 Get Field Type
int dbGetFieldType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section 14.2.3 on page 158, for a description of the field
types.

14.7.4 Get Field Name
char *dbGetFieldName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It returns NULL if DBENTRY does not
point to a field.
162 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Record Attributes
14.7.5 Get Default Value
char *dbGetDefault(DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It returns NULL if DBENTRY
does not point to a field or if the default value is NULL.

14.7.6 Get Field Prompt
char *dbGetPrompt(DBENTRY *pdbentry);
int dbGetPromptGroup(DBENTRY *pdbentry);

The dbGetPrompt routine returns the character string prompt value, which describes the field. dbGetPromptGroup
returns the field group as described in guigroup.h.

14.8 Manipulating Record Attributes
A record attribute is a "psuedo" field definition attached to a record type. If a attribute value is assigned to a psuedo field
name then all record instances of that record type appear to have that field with the defined value. All attribute fields are
DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the record type name. VERS is
initialized to the value "none specified" but can be changed by record support.

14.8.1 dbPutRecord
Attribute
long dbPutRecordAttribute(DBENTRY *pdbentry,
 char *name,char*value)

This creates or modifies attribute name with value.

14.8.2 dbGetRecord
Attribute
long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);

14.9 Manipulating Record Instances
With the exception of dbFindRecord, each of the routines described in this section require that DBENTRY references a
valid record type, i.e. that dbFindRecordType, dbFirstRecordType, or dbNextRecordType has been called
and returned success.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 163

Chapter 14: Static Database Access
Manipulating Record Instances
14.9.1 Get Number of Records
int dbGetNRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently references.

14.9.2 Locate Record
long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then DBENTRY references the
record. dbFindRecord can be called without DBENTRY referencing a valid record type. dbFirstRecord only
works if DBENTRY references a record type. The dbDumpRecords example given at the beginning of this chapter
shows how these routines can be used.

dbFindRecord also calls dbFindField if the record name includes a field name, i.e. it ends in “.XXX”. The routine
dbFoundField returns (TRUE, FALSE) if the field (was, was not) found. If it was not found, then dbFindField must
be called before individual fields can be used.

14.9.3 Get Record Name
char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called after dbFindRecord, dbFirstRecord, or dbNextRecord has returned
success.

14.9.4 Create/Delete/Free Record
long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord, which assumes that DBENTRY references a valid record type, creates a new record instance and
initializes it as specified by the record description. If it returns success, then DBENTRY references the record just created.
dbDeleteRecord deletes a single record instance/. dbFreeRecords deletes all record instances.

14.9.5 Copy Record
long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName

int overWriteOK)

This routine copies the record instance currently referenced by DBENTRY. Thus it creates and new record with the name
newRecordName that is of the same type as the original record and copies the original records field values to the new
record. If newRecordName already exists and overWriteOK is true, then the original newRecordName is deleted
and recreated. If dbCopyRecord completes successfully, DBENTRY references the new record.

14.9.6 Rename Record
long dbRenameRecord(DBENTRY *pdbentry, char *newname)
164 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Menu Fields
This routine renames the record instance currently referenced by DBENTRY. If dbRenameRecord completes
successfully, DBENTRY references the renamed record.

14.9.7 Record Visibility

These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dbInvisibleRecord(DBENTRY *pdbentry);
int dbIsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be visible. dbInvisibleRecord sets a record invisible.
dbIsVisibleRecord returns TRUE if a record is visible and FALSE otherwise.

14.9.8 Find Field
long dbFindField(DBENTRY *pdbentry,char *pfieldName);
int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been located, dbFindField finds the specified field. If it returns success, then
DBENTRY references that field. dbFoundField returns (FALSE, TRUE) if (no field instance is currently available, a
field instance is available).

14.9.9 Get/Put Field Values
char *dbGetString(DBENTRY *pdbentry);
long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);
int dbIsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types except DCT_NOACCESS
but should NOT be used to prompt the user for information for DCT_MENU, DCT_MENUFORM, or DCT_LINK_xxx fields.
dbVerify returns (NULL, a message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to a routines that returns a string will overwrite the value returned by a previous call. Thus it is the caller’s
responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFORM and DCT_LINK_xxx fields can be manipulated via routines described in the following
sections. If, however dbGetString and dbPutString are used, they do work correctly. For these field types
dbGetString and dbPutString are intended to be used only for creating and restoring versions of a database.

14.10 Manipulating Menu Fields
These routines should only be used for DCT_MENU and DCT_MENUFORM fields. Thus they should only be called if
dbFindField, dbFirstField, or dbNextField has returned success and the field type is DCT_MENU or
DCT_MENUFORM.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 165

Chapter 14: Static Database Access
Manipulating Link Fields
14.10.1 Get Number of Menu Choices
int dbGetNMenuChoices(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

14.10.2 Get Menu Choice
char **dbGetMenuChoices(DBENTRY *pdbentry);

This routine returns the address of an array of pointers to strings which contain the menu choices.

14.10.3 Get/Put Menu
int dbGetMenuIndex(DBENTRY *pdbentry);
long dbPutMenuIndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromIndex(DBENTRY *pdbentry,int index);
int dbGetMenuIndexFromString(DBENTRY *pdbentry,

char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenuIndex returns the index of the menu choice for the current field, i.e. it specifies which choice to which the
field is currently set. dbPutMenuIndex sets the field to the choice specified by the index.

dbGetMenuStringFromIndex returns the string value for a menu index. If the index value is invalid NULL is
returned. dbGetMenuIndexFromString returns the index for the given string. If the string is not a valid choice a -1
is returned.

14.10.4 Locate Menu
dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine. This routine just finds a menu with the
given name.

14.11 Manipulating Link Fields

14.11.1 Link Types

Links are the most complicated types of fields. A link can be a constant, reference a field in another record, or can refer to
a hardware device. Two additional complications arise for hardware links. The first is that field DTYP, which is a menu
field, determines if the INP or OUT field is a device link. The second is that the information that must be specified for a
device link is bus dependent. In order to shelter database configuration tools from these complications the following is
done for static database access.

• Static database access will treat DTYP as a DCT_MENUFORM field.

• The information for the link field related to the DCT_MENUFORM can be entered via a set of form manipulation
routines associated with the DCT_MENUFORM field. Thus the link information can be entered via the DTYP field
rather than the link field.
166 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating MenuForm Fields
• The Form routines described in the next section can also be used with any link field.

Each link is one of the following types:

• DCT_LINK_CONSTANT: Constant value.

• DCT_LINK_PV: A process variable link.

• DCT_LINK_FORM: A link that can only be processed via the form routines described in the next chapter.

Database configuration tools can change any link between being a constant and a process variable link. Routines are
provided to accomplish these tasks.

The routines dbGetString, dbPutString, and dbVerify can be used for link fields but the form routines can be
used to provide a friendlier user interface.

14.11.2 All Link Fields
int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulating DCT_xxxLINK fields. dbGetNLinks and dbGetLinkField are used to walk
through all the link fields of a record. dbGetLinkType returns one of the values: DCT_LINK_CONSTANT,
DCT_LINK_PV, DCT_LINK_FORM, or the value -1 if it is called for an illegal field.

14.11.3 Constant and Process Variable Links
long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifying DCT_LINK_CONSTANT or DCT_LINK_PV links. They should not be used
for DCT_LINK_FORM links, which should be processed via the associated DCT_MENUFORM field described above.

14.12 Manipulating MenuForm Fields
These routines are used with a DCT_MENUFORM field (a DTYP field) to manipulate the associated DCT_INLINK or
DCT_OUTLINK field. They can also be used on any DCT_INLINK, DCT_OUTLINK, or DCT_FWDLINK field.

14.12.1 Alloc/Free Form
int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number of elements in the form. If
the current field value contains a macro definition, the number of lines returned is 0.

14.12.2 Get/Put Form
char **dbGetFormPrompt(DBENTRY *pdbentry)
char **dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 167

Chapter 14: Static Database Access
Manipulating MenuForm Fields
dbGetFormPrompt returns a pointer to an array of pointers to character strings specifying the prompt string.
dbGetFormValue returns the current values. dbPutForm, which can use the same array of values returned by
dbGetForm, sets new values.

14.12.3 Verify Form
char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returns NULL if no errors are present. If errors are present, it returns
a pointer to an array of character strings containing error messages. Lines in error have a message and correct lines have a
NULL string.

14.12.4 Get Related Field
char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is called for any other type of
field it returns NULL.

14.12.5 Example

The following is code showing use of these routines:

char **value;
char **prompt;
char **error;
int n;

...
n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {

printf(”%s (%s) : \n”,prompt[i],value[i]);
/*The follwing accepts input from stdin*/
scanf(”%s”,value[i]);

}
error = dbVerifyForm(pdbentry,value);
if(error) {

for(i=0; i<n; i++) {
if(error[i]) printf(”Error: %s (%s) %s\n”, prompt[i],

value[i],error[i]);
}

}else {
dbPutForm(pdbentry,value)

}
dbFreeForm(pdbentry);

All value strings are MAX_STRING_SIZE in length.
168 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Find Breakpoint Table
A set of form calls for a particular DBENTRY, MUST begin with a call to dbAllocForm and end with a call to
dbFreeForm. The values returned by dbGetFormPrompt, dbGetFormValue, and dbVerifyForm are valid only
between the calls to dbAllocForm and dbFreeForm.

14.13 Find Breakpoint Table
brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used by the runtime breakpoint conversion
routines so will not be discussed further.

14.14 Dump Routines
void dbDumpPath(DBBASE *pdbbase)
void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,

int level);
void dbDumpMenu(DBBASE *pdbbase,char *menuName);
void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);
void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,

char *fname);
void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);
void dbDumpDriver(DBBASE *pdbbase);
void dbDumpBreaktable(DBBASE *pdbbase,char *name);
void dbPvdDump(DBBASE *pdbbase,int verbose);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the database. dbDumpRecord, dbDumpMenu, and
dbDumpDriver just call the corresponding dbWritexxxFP routine specifying stdout for the file. dbDumpRecDes,
dbDumpFldDes, and dbDumpDevice give internal information useful on an ioc. Note that all of these commands can
be executed on an ioc. Just specify pdbbase as the first argument.

14.15 Examples

14.15.1 Expand Include

This example is like the dbExpand utility, except that it doesn’t allow path or macro substitution options, It reads a set of
database definition files and writes all definitions to stdout. All include statements appearing in the input files are
expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 169

Chapter 14: Static Database Access
Examples
#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;
int i;
int arg;

if(argc<2) {
printf("usage: expandInclude file1.db file2.db...\n");
exit(0);

 }
for(i=1; i<argc; i++) {

status = dbReadDatabase(&pdbbase,argv[i],NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv[i]);
errMessage(status,"from dbReadDatabase");

}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);

}

14.15.2 dbDumpRecords

NOTE: This example is similar but not identical to the actual dbDumpRecords routine.

The following example demonstrates how to use the database access routines. The example shows how to locate each
record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;
long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
while(!status) {

printf(”record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”\n Record:%s\n”,dbGetRecordName(pdbentry));
while(!status) {

status = dbFirstField(pdbentry,TRUE);
if(status) printf(” No Fields\n”);
170 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Examples
while(!status) {
printf(” %s:%s”,dbGetFieldName(pdbentry),

dbGetString(pdbentry));
status=dbNextField(pdbentry,TRUE);

}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf(”End of all Records\n”);
dbFreeEntry(pdbentry);

}

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 171

Chapter 14: Static Database Access
Examples
172 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access

15.1 Overview
This chapter describes routines for manipulating and accessing an initialized IOC database.

This chapter is divided into the following sections:

• Database related include files. All of interest are listed and those of general interest are discussed briefly.

• Runtime database access overview.

• Description of each runtime database access routine.

• Runtime modification of link fields.

• Lock Set Routines

• Database to Channel Access Routines

• Old Database Access. This is the interface still used by Channel Access and thus by Channel Access clients.

15.2 Database Include Files
Directory base/include contains a number of database related include files. Of interest to this chapter are:

• dbDefs.h: Miscellaneous database related definitions

• dbFldTypes.h: Field type definitions

• dbAccess.h: Runtime database access definitions.

• link.h: Definitions for link fields.

15.2.1 dbDefs.h

This file contains a number of database related definitions. The most important are:

• PVNAME_SZ: The number of characters allowed in the record name.

• FLDNAME_SZ: The number of characters formerly allowed in a field name. This restriction no longer applies in
any base software except dbCaLink.c. THIS SHOULD BE FIXED. It is unknown what effect removing this
restriction will have on Channel Access Clients.

• MAX_STRING_SIZE: The maximum string size for string fields or menu choices.

• DB_MAX_CHOICES: The maximum number of choices for a choice field.

15.2.2 dbFldTypes.h

This file defines the possible field types. A field’s type is perhaps its most important attribute. Changing the possible field
types is a fundamental change to the IOC software, because many IOC software components are aware of the field types.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 173

Chapter 15: Runtime Database Access
Database Include Files
The field types are:

• DBF_STRING: ASCII character string

• DBF_CHAR: Signed character

• DBF_UCHAR: Unsigned character

• DBF_SHORT: Short integer

• DBF_USHORT: Unsigned short integer

• DBF_LONG: Long integer

• DBF_ULONG: Unsigned long integer

• DBF_FLOAT: Floating point number

• DBF_DOUBLE: Double precision float

• DBF_ENUM: An enumerated field

• DBF_MENU: A menu choice field

• DBF_DEVICE: A device choice field

• DBF_INLINK: Input Link

• DBF_OUTLINK: Output Link

• DBF_FWDLINK: Forward Link

• DBF_NOACCESS: A private field for use by record access routines

A field of type DBF_STRING, ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRING field contains a NULL
terminated ascii string. The field types DBF_CHAR, ..., DBF_DOUBLE correspond to the standard C data types.

DBF_ENUM is used for enumerated items, which is analogous to the C language enumeration. An example of an enum
field is field VAL of a multi bit binary record.

The field types DBF_ENUM, DBF_MENU, and DBF_DEVICE all have an associated set of ASCII strings defining the
choices. For a DBF_ENUM, the record support module supplies values and thus are not available for static database access.
The database access routines locate the choice strings for the other types.

DBF_INLINK and DBF_OUTLINK specify link fields. A link field can refer to a signal located in a hardware module, to a
field located in a database record in the same IOC, or to a field located in a record in another IOC. A DBF_FWDLINK can
only refer to a record in the same IOC. Link fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK (output), and DBF_FWDLINK (forward) specify that the field is a link structure as
defined in link.h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a constant value. This is
somewhat of a misnomer because constant link fields can be modified via dbPutField or dbPutLink.

2. Hardware links - The link contains a data structure which describes a signal connected to a particular hardware bus.
See link.h for a description of the bus types currently supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same IOC.
c. CA_LINK: A reference to a variable located in another IOC.

DCT always creates a PV_LINK. When the IOC is initialized each PV_LINK is converted either to a DB_LINK or a
CA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.

15.2.3 dbAccess.h

This file is the interface definition for the run time database access library, i.e. for the routines described in this chapter.
174 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview
An important structure defined in this header file is DBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; /* address of field*/
void *pfldDes; /* address of struct fldDes*/
void *asPvt; /* Access Security Private*/
long no_elements; /* number of elements (arrays)*/
short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/
short special; /* special processing*/
short dbr_field_type; /*optimal database request type*/

}DBADDR;

• precord: Address of record. Note that its type is a pointer to a structure defining the fields common to all record
types. The common fields appear at the beginning of each record. A record support module can cast precord to
point to the specific record type.

• pfield: Address of the field within the record. Note that pfield provides direct access to the data value.

• pfldDes: This points to a structure containing all details concerning the field. See Chapter “Database Structures”
for details.

• asPvt: A field used by access security.

• no_elements: A string or numeric field can be either a scalar or an array. For scalar fields no_elements has the
value 1. For array fields it is the maximum number of elements that can be stored in the array.

• field_type: Field type.

• field_size: Size of one element of the field.

• special: Some fields require special processing. This specifies the type. Special processing is described later in this
manual.

• dbr_field_type: This specifies the optimal database request type for this field, i.e. the request type that will require
the least CPU overhead.

NOTE: pfield, no_elements, field_type, field_size, special, and dbr_field_type can all be set by
record support (cvt_dbaddr). Thus field_type, field_size, and special can differ from that specified by
pfldDes.

15.2.4 link.h

This header file describes the various types of link fields supported by EPICS.

15.3 Runtime Database Access Overview
With the exception of record and device support, all access to the database is via the channel or database access routines.
Even record support routines access other records only via database or channel access. Channel Access, in turn, accesses
the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the set of routines that
constitute database access. This provides a good look at the facilities provided by the database.

Before describing database access, one caution must be mentioned. The only way to communicate with an IOC database
from outside the IOC is via Channel Access. In addition, any special purpose software, i.e. any software not described in
this document, should communicate with the database via Channel Access, not database access, even if it resides in the
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 175

Chapter 15: Runtime Database Access
Runtime Database Access Overview
same IOC as the database. Since Channel Access provides network independent access to a database, it must ultimately
call database access routines. The database access interface was changed in 1991, but Channel Access was never changed.
Instead a module was written which translates old style database access calls to new. This interface between the old and
new style database access calls is discussed in the last section of this chapter.

The database access routines are:

• dbNameToAddr: Locate a database variable.

• dbGetField: Get values associated with a database variable.

• dbGetLink: Get value of field referenced by database link (Macro)

• dbGetLinkValue: Get value of field referenced by database link (Subroutine)

• dbGet: Routine called by dbGetLinkValue and dbGetField

• dbPutField: Change the value of a database variable.

• dbPutLink: Change value referenced by database link (Macro)

• dbPutLinkValue: Change value referenced by database link (Subroutine)

• dbPut: Routine called by dbPutxxx functions.

• dbPutNotify: A database put with notification on completion

• dbNotifyCancel: Cancel dbPutNotify

• dbNotifyAdd: Add a new record for to notify set.

• dbNotifyCompletion: Announce that put notify is complete.

• dbBufferSize: Determine number of bytes in request buffer.

• dbValueSize: Number of bytes for a value field.

• dbGetRset: Get pointer to Record Support Entry Table

• dbIsValueField: Is this field the VAL field.

• dbGetFieldIndex: Get field index. The first field in a record has index 0.

• dbGetNelement: Get number of elements in the field

• dbIsLinkConnected: Is the link field connected.

• dbGetPdbAddrFromLink: Get address of DBADDR.

• dbGetLinkDBFtype: Get field type of link.

• dbGetControlLimits: Get Control Limits.

• dbGetGraphicLimits: Get Graphic Limits.

• dbGetAlarmLimits: Get Alarm Limits

• dbGetPrecision: Get Precision

• dbGetUnits: Get Units

• dbGetNelements: Get Number of Elements

• dbGetSevr: Get Severity

• dbGetTimeStamp: Get Time Stamp

• dbPutAttribute Give a value to a record attribute.

• dbScanPassive: Process record if it is passive.

• dbScanLink: Process record referenced by link if it is passive.

• dbProcess: Process Record

• dbScanFwdLink: Scan a forward link.
176 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview
15.3.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request types and request options. When
dbPutField or dbGetField are called one of the arguments is a database request type. This argument has one of the
following values:

• DBR_STRING: Value is a NULL terminated string

• DBR_CHAR: Value is a signed char

• DBR_UCHAR: Value is an unsigned char

• DBR_SHORT: Value is a short integer

• DBR_USHORT: Value is an unsigned short integer

• DBR_LONG: Value is a long integer

• DBR_ULONG: Value is an unsigned long integer

• DBR_FLOAT: Value is an IEEE floating point value

• DBR_DOUBLE: Value is an IEEE double precision floating point value

• DBR_ENUM: Value is a short which is the enum item

• DBR_PUT_ACKT: Value is an unsigned short for setting the ACKT.

• DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request types DBR_STRING,..., DBR_DOUBLE correspond exactly to valid data types for database fields. DBR_ENUM
corresponds to database fields that represent a set of choices or options. In particular it corresponds to the fields types
DBF_ENUM, DBF_DEVICE, and DBF_MENU. The complete set of database field types are defined in dbFldTypes.h.
DBR_PUT_ACKT and DBR_PUT_ACKS are used to perform global alarm acknowledgment.

dbGetField also accepts argument options which is a mask containing a bit for each additional type of information the
caller desires. The complete set of options is:

• DBR_STATUS: returns the alarm status and severity

• DBR_UNITS: returns a string specifying the engineering units

• DBR_PRECISION: returns a long integer specifying floating point precision.

• DBR_TIME: returns the time

• DBR_ENUM_STRS: returns an array of strings

• DBR_GR_LONG: returns graphics info as long values

• DBR_GR_DOUBLE: returns graphics info as double values

• DBR_CTRL_LONG: returns control info as long values

• DBR_CTRL_DOUBLE: returns control info as double values

• DBR_AL_LONG: returns alarm info as long values

• DBR_AL_DOUBLE: returns alarm info as double values

15.3.2 Options
Example

The file dbAccess.h contains macros for using options. A brief example should show how they are used. The following
example defines a buffer to accept an array of up to ten float values. In addition it contains fields for options
DBR_STATUS and DBR_TIME.

struct buffer {
DBRstatus
DBRtime
float value[10];

} buffer;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 177

Chapter 15: Runtime Database Access
Database Access Routines
The associated dbGetField call is:

long options,number_elements,status;
 ...
options = DBR_STATUS | DBR_TIME;
number_elements = 10;
status = dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

Consult dbAccess.h for a complete list of macros.

Structure dbAddr contains a field dbr_field_type. This field is the database request type that most closely matches
the database field type. Using this request type will put the smallest load on the IOC.

Channel Access provides routines similar to dbGetField, and dbPutField. It provides remote access to
dbGetField, dbPutField, and to the database monitors described below.

15.3.3 ACKT and ACKS

The request types DBR_PUT_ACKT and DBR_PUT_ACKS are used for global alarm acknowledgment. The alarm handler
uses these requests. For each of these types the user (normally channel access) passes an unsigned short value. This value
represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS - The highest alarm severity to acknowledge. If the current alarm severity is less then or equal to this
value the alarm is acknowledged.

15.4 Database Access Routines

15.4.1 dbNameToAddr

Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to database records and fields
within records. The basic rules are:

• Call dbNameToAddr once and only once for each field to be accessed.

• Read field values via dbGetField and write values via dbPutField.

The routines described in this subsection are used by channel access, sequence programs, etc. Record processing routines,
however, use the routines described in the next section rather then dbGetField and dbPutField.

Given a process variable name, this routine locates the process variable and fills in the fields of structure dbAddr. The
format for a process variable name is:

 “<record_name>.<field_name>”

For example the value field of a record with record name sample_name is:

 “sample_name.VAL”.

The record name is case sensitive. Field names always consist of all upper case letters.
178 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines
dbNameToAddr locates a record via a process variable directory (PVD). It fills in a structure (dbAddr) describing the
field. dbAddr contains the address of the record and also the field. Thus other routines can locate the record and field
without a search. Although the PVD allows the record to be located via a hash algorithm and the field within a record via
a binary search, it still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located the
dbAddr structure allows the process variable to be accessed directly.

15.4.2 Get Routines

15.4.2.1 dbGetField

Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, calls dbGet, and unlocks.

15.4.2.2 dbGetLink and dbGetLinkValue

Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
 1) options can be NULL if no options are desired.
 2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that calls dbGetLinkValue. The macro skips the call for constant links. User code
should never call dbGetLinkValue.

This routine is called by database access itself and by record support and/or device support routines in order to get values
for input links. The value can be obtained directly from other records or via a channel access client. This routine honors
the link options (process and maximize severity). In addition it has code that optimizes the case of no options and scalar.

15.4.2.3 dbGet

Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 179

Chapter 15: Runtime Database Access
Database Access Routines
Thus routine retrieves the data referenced by paddr and converts it to the format specified by dbrType.

”options” is a read/write field. Upon entry to dbGet, options specifies the desired options. When dbGetField
returns, options specifies the options actually honored. If an option is not honored, the corresponding fields in buffer
are filled with zeros.

”nRequest” is also a read/write field. Upon entry to dbGet it specifies the maximum number of data elements the caller
is willing to receive. When dbGet returns it equals the actual number of elements returned. It is permissible to request
zero elements. This is useful when only option data is desired.

”pfl” is a field used by the Channel Access monitor routines. All other users must set pfl=NULL.

dbGet calls one of a number of conversion routines in order to convert data from the DBF types to the DBR types. It calls
record support routines for special cases such as arrays. For example, if the number of field elements is greater then 1 and
record support routine get_array_info exists, then it is called. It returns two values: the current number of valid field
elements and an offset. The number of valid elements may not match dbAddr.no_elements, which is really the
maximum number of elements allowed. The offset is for use by records which implement circular buffers.

15.4.3 Put Routines

15.4.3.1 dbPutField

Change the value of a process variable, format:

long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGetField, this routine calls one of a number of conversion routines to do the actual
conversion and relies on record support routines to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for dbPutField is:

1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, the field is not written.

2. The record is locked.

3. dbPut is called.

4. If the dbPut is successful then:
If this is the PROC field or if both of the following are TRUE: 1) the field is a process passive field, 2) the record is
passive.

a. If the record is already active ask for the record to be reprocessed when it completes.
b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.

5. The record is unlocked.

15.4.3.2 dbPutLink and dbPutLinkValue

Change the value referenced by a database link, format:

long dbPutLink(
structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data to write*/
long nRequest);/*number of elements to write*/
180 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines
dbPutLink is actually a macro that calls dbPutLinkValue. The macro skips the call for constant links. User code
should never call dbPutLinkValue.

This routine is called by database access itself and by record support and/or device support routines in order to put values
into other database records via output links.

For Channel Access links it calls dbCaPutLink.

For database links it performs the following functions:

1. Calls dbPut.

2. Implements maximize severity.

3. If the field being referenced is PROC or if both of the following are true: 1) process_passive is TRUE and 2)
the record is passive then:

a. If the record is already active because of a dbPutField request then ask for the record to be reprocessed
when it completes.

b. otherwise call dbScanPassive.

15.4.3.3 dbPut

Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGet, this routine calls one of a number of conversion routines to do the actual conversion and
relies on record support routines to handle arrays and other special cases.

15.4.4 Put Notify Routines

dbPutNotify is a request to notify the caller when all records that are processed as a result of a put complete
processing. The complication occurs because of record linking and asynchronous records. A put can cause an entire chain
of records to process. If any record is an asynchronous record then record completion means asynchronous completion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just returns
S_db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine will be always be called unless
dbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an error is detected. If everything
completes synchronously the callback routine will be called BEFORE dbPutNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.

4. In general a set of records may need to be processed as a result of a single dbPutNotify. If database access
detects that another dbPutNotify request is active on any record in the set, other then the record referenced by
the dbPutNotify, then the dbPutNotify request will restarted

5. If a record in the set is found to be active because of a dbPutField request then when that record completes the
dbPutNotify will be restarted.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 181

Chapter 15: Runtime Database Access
Database Access Routines
6. If a record is found to already be active because of the original dbPutNotify request then nothing is done. This
is what is done now and any attempt to do otherwise could easily cause existing databases to go into an infinite
processing loop.

It is expected that the caller will arrange a timeout in case the dbPutNotify takes too long. In this case the caller can
call dbNotifyCancel

15.4.4.1 dbPutNotify

Perform a database put and notify when record processing is complete.

Format:

long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{
void (*userCallback)(struct putNotify *);
DBADDR *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/
void *usrPvt; /*for private use of user*/
/*The following is status of request.Set by dbPutNotify*/
long status;
/*fields private to database access*/
...

}PUTNOTIFY;

The caller must allocate a PUTNOTIFY structure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR
pbuffer - address of data
nRequest - number of data elements
dbrType - database request type
usrPvt - a void * field that caller can use as needed.

The status value returned by dbPutNotify is either:

• S_db_Pending: Success: Callback may already have been called or will be called later.

• S_db_Blocked: The request failed because a dbPutNotify is already active in the record to which the put is
directed.

When the user supplied callback is called, the status value stored in PUTNOTIFY is one of the following:

• 0: Success

• S_xxxx: The request failed due to some other error.

The user callback is always called unless dbPutNotify returns S_db_Blocked or dbNotifyCancel is called before
the put notify competes.

15.4.4.2 dbNotifyCancel

Cancel an outstanding dbPutNotify.

Format:
182 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines
void dbNotifyCancel(PUTNOTIFY *pputnotify);

This cancels an active dbPutNotify.

15.4.4.3 dbNotifyAdd

This routine is called by database access itself. It should never be called by user code.

15.4.4.4 dbNotifyCompletion

This routine is called by database access itself. It should never be called by user code.

15.4.5 Utility Routines

15.4.5.1 dbBufferSize

Determine the buffer size for a dbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returned to dbGetField if the request type, options, and number of
elements are specified as given to dbBufferSize. Thus it can be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

15.4.5.2 dbValueSize

Determine the size a value field, format:

dbValueSize(short dbrType);/* DBR_xxx*/

This routine returns the number of bytes for each element of type dbrType.

NOTE: This should become a Channel Access routine

15.4.5.3 dbGetRset

Get address of a record support entry table.

Format:

struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenced by the DBADDR.

15.4.5.4 dbIsValueField

Is this field the VAL field of the record?

Format:

int dbIsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes the get_value record support routine obsolete.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 183

Chapter 15: Runtime Database Access
Database Access Routines
15.4.5.5 dbGetFieldIndex

Get field index.

Format:

int dbGetFieldIndex(DBADDR *paddr);

Record support routines such as special and cvt_dbaddr need to know which field the DBADDR references. The
include file describing the record contains define statements for each field. dbGetFieldIndex returns the index that
can be matched against the define statements (normally via a switch statement).

15.4.5.6 dbGetNelements

Get number of elements in a field.

Format:

 long dbGetNelements(struct link *plink,long *nelements);

This sets *nelements to the number of elements in the field referenced by plink.

15.4.5.7 dbIsLinkConnected

Is the link connected.

Format:

int dbIsLinkConnected(struct link *plink);

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.4.5.8 dbGetPdbAddrFromLink

Get address of DBADDR from link.

Format:

DBADDR *dbGetPdbAddrFromLink(struct link *plink);

This macro returns the address of the DBADDR for a database link and NULL for all other link types.

15.4.5.9 dbGetLinkDBFtype

Get field type of a link.

Format:

int dbGetLinkDBFtype(struct link *plink);

15.4.5.10 dbGetControlLimits

Get Control Limits for link.

Format:

long dbGetControlLimits(struct link *plink,double *low, double *high);

15.4.5.11 dbGetGraphicLimits

Get Graphic Limits for link.

Format:
184 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines
long dbGetGraphicLimits(struct link *plink,double *low, double *high);

15.4.5.12 dbGetAlarmLimits

Get Alarm Limits for link.

Format:

long dbGetAlarmLimits(struct link *plink,
double lolo,double *low, double *high,double hihi);

15.4.5.13 dbGetPrecision

Get Precision for link.

Format:

long dbGetPrecision(struct link *plink,short *precision);

15.4.5.14 dbGetUnits

Get Units for link.

Format:

long dbGetUnits(struct link *plink,char *units,int unitsSize);

15.4.5.15 dbGetSevr

Get Severity for link.

Format:

long dbGetSevr(struct link *plink,short *sevr);

15.4.5.16 dbGetTimeStamp

Get Time Stamp for record containing link.

Format:

long dbGetTimeStamp(struct link *plink,TS_STAMP *pstamp);

15.4.6 Attribute Routine

15.4.6.1 dbPutAttribute

Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
 char *name,char*value);

This sets the record attribute name for record type recordTypename to value.For example the following would set
the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 185

Chapter 15: Runtime Database Access
Runtime Link Modification
15.4.7 Process Routines

15.4.7.1 dbScanPassive
dbScanLink
dbScanFwdLink

Process record if it is passive, format:

long dbScanPassive(
struct dbCommon *pfrom,
struct dbCommon *pto); /* addr of record*/

long dbScanLink(
struct dbCommon *pfrom,
struct dbCommon *pto);

void dbScanFwdLink(struct link *plink);

dbScanPassive and dbScanLink are given the record requesting the scan, which may be NULL, and the record to
be processed. If the record is passive and pact=FALSE then dbProcess is called. Note that these routine are called by
dbGetLink, dbPutField, and by recGblFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules for scanning a forward link. That
is for DB_LINKs it calls dbScanPassive and for CA_LINKS it does a dbCaPutLink if the PROC field of record is being
addressed.

15.4.7.2 dbProcess

Request that a database record be processed, format:

long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

15.5 Runtime Link Modification
Database links can be changed at run time but only via a channel access client, i.e. via calls to dbPutField but not to
dbPutLink. The following restrictions apply:

• Only DBR_STRING is allowed.

• If a link is being changed to a different hardware link type then the DTYP field must be modified before the link
field.

• The syntax for the string field is exactly the same as described for link fields in chapter “Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition modification to record/device
support will be needed in order to properly support dynamic modification of hardware links.
186 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Monitors
15.6 Channel Access Monitors
There are facilities within the Channel Access communication infrastructure which allow the value of a process variable
to be monitored by a channel access client. It is a responsibility of record support (and db common) to notify the channel
access server when the internal state of a process variable has been modified. State changes can include changes in the
value of a process variable and also changes in the alarm state of a process variable. The routine “db_post_events()” is
called to inform the channel access server that a process variable state change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,
unsigned intselect);

The first argument, “precord”, should be passed a pointer to the record which is posting the event(s). The second
argument, “pfield”, should be passed a pointer to the field in the record that contains the process variable that has been
modified. The third argument, “select”, should be passed an event select mask. This mask can be any logical or
combination of {DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the event select
mask follows.

• DBE_VALUE This indicates that a significant change in the process variable’s value has occurred. A significant
change is often determined by the magnitude of the monitor “dead band” field in the record.

• DBE_LOG This indicates that a change in the process variable’s value significant to archival clients has occurred.
A significant change to archival clients is often determined by the magnitude of the archive “dead band” field in the
record.

• DBE_ALARM This indicates that a change in the process variable’s alarm state has occurred.

The function “db_post_events()” returns 0 if it is successful and -1 if it fails. It appears to be common practice within
EPICS record support to ignore the status from “db_post_events()”. At this time “db_post_events()” always returns 0
(success). because so many records at this time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked attempting to post an event
because a slow client is not able to process events fast enough. Each call to “db_post_events()” causes the current value,
alarm status, and time stamp for the field to be copied into a ring buffer. The thread calling “db_post_events()” will not be
delayed by any network or memory allocation overhead. A lower priority thread in the server is responsible for
transferring the events in the event queue to the channel access clients that may be monitoring the process variable.

Currently, when an event is posted for a DBF_STRING field or a field containing array data the value is NOT saved in the
ring buffer and the client will receive whatever value happens to be in the field when the lower priority thread transfers the
event to the client. This behavior may be improved in the future.

15.7 Lock Set Routines
User code only calls dbScanLock and dbScanUnlock. All other routines are called by iocCore.

15.7.0.1 dbScanLock

Lock a lock set:

long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 187

Chapter 15: Runtime Database Access
Lock Set Routines
15.7.0.2 dbScanUnlock

Unlock a lock set:

long void dbScanUnlock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs

15.7.0.3 dbLockGetLockId

Get lock set id:

long dbLockGetLockId(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to determine if two records are in the
same lock set.

15.7.0.4 dbLockInitRecords

Determine lock sets for each record in database.

void dbLockInitRecords(dbBase *pdbbase);

Called by iocInit.

15.7.0.5 dbLockSetMerge

Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by dbLockInitRecords and also when links
are modified by dbPutField.

15.7.0.6 dbLockSetSplitSl

Recompute lock sets for given lock set

void dbLockSetSplit(struct dbCommon *psource);

This is called when dbPutField modifys links.

15.7.0.7 dbLockSetGblLock

Global lock for modifying links.

void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prevent conflicts.

15.7.0.8 dbLockSetGblUnlock

Unlock the global lock.

void dbLockSetGblUnlock(void);

15.7.0.9 dbLockSetRecordLock

If record is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);
188 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Database Links
15.8 Channel Access Database Links
The routines described here are used to create and manipulate Channel Access connections from database input or output
links. At IOC initialization an attempt is made to convert all process variable links to database links. For any link that
fails, it is assumed that the link is a Channel Access link, i.e. a link to a process variable defined in another IOC. The
routines described here are used to manage these links. User code never needs to call these routines. They are
automatically called by iocInit and database access.

At iocInit time a task dbCaLink is spawned. This task is a channel access client that issues channel access requests
for all channel access links in the database. For each link a channel access search request is issued. When the search
succeeds a channel access monitor is established. The monitor is issued specifying ca_field_type and
ca_element_count. A buffer is also allocated to hold monitor return data as well as severity. When dbCaGetLink is
called data is taken from the buffer, converted if necessary, and placed in the location specified by the pbuffer
argument.

When the first dbCaPutLink is called for a link an output buffer is allocated, again using ca_field_type and
ca_element_count. The data specified by the pbuffer argument is converted and stored in the buffer. A request is then
made to dbCaLink task to issue a ca_put. Subsequent calls to dbCaPutLink reuse the same buffer.

15.8.1 Basic Routines

These routines are normally only called by database access, i.e. they are not called by record support modules.

15.8.1.1 dbCaLinkInit

Called by iocInit to initialize the dbCa library

void dbCaLinkInit(void);

15.8.1.2 dbCaAddLink

Add a new channel access link

void dbCaAddLink(struct link *plink);

15.8.1.3 dbCaRemoveLink

Remove channel access link.

void dbCaRemoveLink(struct link *plink);

15.8.1.4 dbCaGetLink

Get link value

long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);

15.8.1.5 dbCaPutLink

Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 189

Chapter 15: Runtime Database Access
Channel Access Database Links
15.8.1.6 dbCaGetAttributes

Get Attributes

long dbCaGetAttributes(struct link *plink,
void (*callback)(void *usrPvt),void *usrPvt);

15.8.1.7 dbCaGetControlLimits

Get Control Limits

long dbCaGetControlLimits(struct link *plink,double *low, double *high);

15.8.1.8 dbCaGetGraphicLimits

Get graphic Limits

long dbCaGetGraphicLimits(struct link *plink,double *low, double *high);

15.8.1.9 dbCaGetAlarmLimits

Get Alarm Limits

long dbCaGetAlarmLimits(struct link *plink,
double *lolo, double *low, double *high, double *hihi);

15.8.1.10 dbCaGetPrecision

Get Precision

long dbCaGetPrecision(struct link *plink,short *precision);

15.8.1.11 dbCaGetUnits

Get Units

long dbCaGetUnits(struct link *plink,char *units,int unitsSize);

15.8.1.12 dbCaGetNelements

Get Number of Elements

long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of elements.

15.8.1.13 dbCaGetSevr

Get Alarm Severity

long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

15.8.1.14 dbCaGetTimeStamp

Get Time Stamp

long dbCaGetTimeStamp(struct link *plink,TS_STAMP *pstamp));
190 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Database Links
15.8.1.15 dbCaIsLinkConnected

Is Channel Connected

int dbCaIsLinkConnected(struct link *plink)

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.8.1.16 dbCaGetLinkDBFtype

Get link type

int dbCaGetLinkDBFtype(struct link *plink);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 191

Chapter 15: Runtime Database Access
Channel Access Database Links
192 EPICS IOC Application Developer’s Guide

Chapter 16: Device Support Library

NOTE: For 3.14 this is only available on vxWorks

16.1 Overview
Include file devLib.h provides definitions for a library of routines useful for device and driver modules. These are a new
addition to EPICS and are not yet used by all device/driver support modules. Until they are, the registration routines will
not prevent addressing conflicts caused by multiple device/drivers trying to use the same VME addresses.

16.2 Registering VME Addresses

16.2.1 Definitions of Address Types
typedef enum {

atVMEA16,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName[]
= {
”VME A16”,
”VME A24”,
”VME A32”
};

int EPICStovxWorksAddrType[]
= {
VME_AM_SUP_SHORT_IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

};

16.2.2 Register Address
long devRegisterAddress(
const char *pOwnerName,

epicsAddressType addrType,
void *baseAddress,
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 193

Chapter 16: Device Support Library
Interrupt Connect Routines
unsigned size,
void **pLocalAddress);

This routine is called to register a VME address. This routine keeps a list of all VME addresses requested and returns an
error message if an attempt is made to register any addresses that are already being used. *pLocalAddress is set equal
to the address as seen by the caller.

16.2.3 Unregister Address
long devUnregisterAddress(

epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by a call to devRegisterAddress.

16.3 Interrupt Connect Routines

16.3.1 Definitions of Interrupt Types
typedef enum {intCPU, intVME, intVXI} epicsInterruptType;

16.3.2 Connect
long devConnectInterrupt(

epicsInterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),
void *parameter);

16.3.3 Disconnect
long devDisconnectInterrupt(

epicsInterruptType intType,
unsigned vectorNumber);

16.3.4 Enable Level
long devEnableInterruptLevel(

epicsInterruptType intType,
unsigned level);

16.3.5 Disable Level
long devDisableInterruptLevel(

epicsInterruptType intType,
194 EPICS IOC Application Developer’s Guide

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values
unsigned level);

16.4 Macros and Routines for Normalized Analog Values

16.4.1 Normalized GetField
long devNormalizedGblGetField(

long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

This routine is just like recGblGetField, except that if the request type is DBR_FLOAT or DBR_DOUBLE, the
normalized value of rawValue is obtained, i.e. rawValue is converted to a value in the range 0.0<=value<.1.0

16.4.2 Convert Digital Value to a Normalized Double Value
#define devCreateMask(NBITS)((1<<(NBITS))-1)
#define devDigToNml(DIGITAL,NBITS) \

(((double)(DIGITAL))/devCreateMask(NBITS))

16.4.3 Convert Normalized Double Value to a Digital Value
#define devNmlToDig(NORMAL,NBITS) \

(((long)(NORMAL)) * devCreateMask(NBITS))
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 195

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values
196 EPICS IOC Application Developer’s Guide

Chapter 17: EPICS General Purpose Tasks

17.1 Overview
This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2) Task Watchdog.

Often when writing code for an IOC there is no obvious task under which to execute. A good example is completion code
for an asynchronous device support module. EPICS supplies the callback tasks for such code.

If an IOC tasks "crashes" there is normally no one monitoring the vxWorks shell to detect the problem. EPICS provides a
task watchdog task which periodically checks the state of other tasks. If it finds that a monitored task has terminated or
suspended it issues an error message and can also call other routines which can take additional actions. For example a
subroutine record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC code that issues printf calls
generates errors messages that are never seen. In addition the vxWorks implementation of fprintf requires much more
stack space then printf calls. Another problem with vxWorks is the logMsg facility. logMsg generates messages at
higher priority then all other tasks except the shell. EPICS solves all of these problems via an error message handling
facility. Code can call any of the routines errMessage, errPrintf, or epicsPrintf. Any of these result in the error
message being generated by a separate low priority task. The calling task has to wait until the message is handled but
other tasks are not delayed. In addition the message can be sent to a system wide error message file.

17.2 General Purpose Callback Tasks

17.2.1 Overview

EPICS provides three general purpose IOC callback tasks. The only difference between the tasks is scheduling priority:
Low, Medium, and High. The low priority task runs at a priority just higher than Channel Access, the medium at a priority
about equal to the median of the periodic scan tasks, and the high at a priority higher than the event scan task.The callback
tasks provide a service for any software component that needs a task under which to run. The callback tasks use the task
watchdog (described below). They use a rather generous stack and can thus be used for invoking record processing. For
example the I/O event scanner uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>

2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 197

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks
It is permissible for this to be part of a larger structure, e.g.

struct {
...
CALLBACK mycallback;
...

} ...

3. Call routines (actually macros) to initialize fields in CALLBACK:

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function returning VOID. The
second argument is the address of the CALLBACK structure.

callbackSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the values: priorityLow, priorityMedium, or
priorityHigh. These values are defined in callback.h. The second argument is again the address of the
CALLBACK structure.

callbackSetUser(VOID *, CALLBACK *);

This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single argument, which is the same
argument that was passed to callbackRequest, i.e., the address of the CALLBACK structure.

17.2.2 Syntax

The following calls are provided:

void callbackInit(void);

void callbackSetCallback(void *pcallbackFunction,
CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);
void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,

int Priority, void *pRec);

void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:
198 EPICS IOC Application Developer’s Guide

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks
• callbackInit is performed automatically when EPICS initializes and IOC. Thus user code never calls this
function.

• callbackSetCallback, callbackSetPriority, callbackSetUser, and callbackGetUser are
actually macros.

• callbackRequest and callbackRequestProcessCallback can both be called at interrupt level.

• callbackRequestProcessCallback is designed for the completion phase of asynchronous record
processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback, which is designed for asynchronous device completion applications, consists of the
following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;
struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

}

17.2.3 Example

An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];

}myStruct;

void myCallback(CALLBACK *pcallback)
{

struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf(”begid=%s endid=%s\n”,&pmyStruct->begid[0],

&pmStruct->endid[0]);
}
example(char *pbegid, char*pendid)
{

strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);
callbackSetCallback(myCallback,&myStruct.callback);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 199

Chapter 17: EPICS General Purpose Tasks
Task Watchdog
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:

example(”begin”,”end”)

This simple example shows how to use the callback tasks with your own structure that contains the CALLBACK structure
at an arbitrary location.

17.2.4 Callback Queue

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to hold 2000 requests. This
value can bechanged by calling callbackSetQueueSize before incInit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

17.3 Task Watchdog
EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to be watched. The task
watchdog runs periodically and checks each task in its task list. If any task is suspended, an error message is issued and,
optionally, a callback task is invoked. The task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdInsert (int tid, TASKWDFUNCPRR callback,
VOID *userarg);

This is the request to include the task with the specified tid in the list of tasks to be watched. If callback is not
NULL then if the task becomes suspended, the callback routine will be called with a single argument userarg.

3. Remove request:

taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when the original task goes into the
suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnyInsert(void *userpvt,TASKWDFUNCPRR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by the task watchdog task suspends.
userpvt must have a non NULL unique value taskwdAnyInsert, because the task watchdog system uses this
value to determine who to remove if taskwdAnyRemove is called.

5. Remove request for taskwdAnyInsert:
200 EPICS IOC Application Developer’s Guide

Chapter 17: EPICS General Purpose Tasks
Task Watchdog
taskwdAnyRemove(void *userpvt);

userpvt is the value that was passed to taskwdAnyInsert.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 201

Chapter 17: EPICS General Purpose Tasks
Task Watchdog
202 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning

18.1 Overview
Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible:

• Periodic: A record can be processed periodically. A number of time intervals are supported.

• Event: Event scanning is based on the posting of an event by another component of the software via a call to the
routine post_event.

• I/O Event: The original meaning of this scan type is a request for record processing as a result of a hardware
interrupt. The mechanism supports hardware interrupts as well as software generated events.

• Passive: Passive records are processed only via requests to dbScanPassive. This happens when database links
(Forward, Input, or Output), which have been declared ”Process Passive” are accessed during record processing. It
can also happen as a result of dbPutField being called (This normally results from a Channel Access put
request).

• Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database fields involved with
scanning. It next discusses the interface to the scanning system. The last section gives a brief overview of how the
scanners are implemented.

18.2 Scan Related Database Fields
The following fields are normally defined via DCT. It should be noted, however, that it is quite permissible to change any
of the scan related fields of a record dynamically. For example, a display manager screen could tie a menu control to the
SCAN field of a record and allow the operator to dynamically change the scan mechanism.

18.2.1 SCAN

This field, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.
Event: Event Scanned. The field EVNT specifies event number
I/O Event scanned.
10 Second: Periodically scanned - Every 10 seconds
...
.1 Second: Periodically scanned - Every .1 seconds
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 203

Chapter 18: Database Scanning
Scan Related Software Components
18.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example all records periodically
scanned at a 2 second rate are in the same scan set. All Event scanned records with the same EVNT are in the same scan
set, etc. For records in the same scan set, all records with PHAS=0 are processed before records with PHAS=1, which are
processed before all records with PHAS=2, etc.

In general it is not a good idea to rely on PHAS to enforce processing order. It is better to use database links.

18.2.3 EVNT - Event Number

This field only has meaning when SCAN is set to Event scanning, in which case it specifies the event number. In order for
a record to be event scanned, EVNT must be in the range 0,...255. It should also be noted that some EPICS software
components will not request event scanning for event 0. One example is the eventRecord record support module. Thus
the application developer will normally want to define events in the range 1,...,255.

18.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority, e.g. the event and I/O event
scan facility uses this field.

18.3 Scan Related Software Components

18.3.1 menuScan.dbd

This file contains definitions for a menu related to field SCAN. The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”Event”)
choice(menuScanI_O_Intr,”I/O Intr”)
choice(menuScan10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScan1_second,”1 second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are for the periodic scan rates,
which must appear in order of decreasing rate. At IOC initialization, the menu values are read by scan initialization. The
number of periodic scan rates and the value of each rate is determined from the menu values. Thus periodic scan rates can
be changed by changing menuScan.dbd and loading this version via dbLoadDatabase. The only requirement is that
each periodic definition must begin with the value and the value must be in units of seconds.
204 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Scan Related Software Components
18.3.2 dbScan.h

All software components that interact with the scanning system must include this file.

The most important definitions in this file are:

/* Note that these must match the first four definitions*/
/* in choiceGbl.dbd*/
#define SCAN_PASSIVE 0
#define SCAN_EVENT 1
#define SCAN_IO_EVENT 2
#define SCAN_1ST_PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);
void post_event(int event);
void scanAdd(struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord);
int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/
void scanIoInit(IOSCANPVT *);
void scanIoRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definitions (IOSCANPVT and
interruptAccept) are for interfacing with the I/O event scanner. The remaining definitions define the public scan
access routines. These are described in the following subsections.

18.3.3 Initializing Database Scanners
scanInit(void);

The routine scanInit is called by iocInit. It initializes the scanning system.

18.3.4 Adding And Deleting Records From Scan List

The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDelete(struct dbCommon *);

These routines are called by scanInit at IOC initialization time in order to enter all records created via DCT into the
correct scan list. The routine dbPut calls scanDelete and scanAdd each time a scan related field is changed (each
scan related field is declared to be SPC_SCAN in dbCommon.dbd). scanDelete is called before the field is modified
and scanAdd after the field is modified.

18.3.5 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 205

Chapter 18: Database Scanning
Scan Related Software Components
post_event(event)

This can be called by virtually any IOC software component. For example sequence programs can call it. The record
support module for eventRecord calls it.

18.3.6 Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include <dbScan.h>

2. For each separate event source the following must be done:
a. Declare an IOSCANPVT variable, e.g.

static IOSCANPVT ioscanpvt;
b. Call scanIoInit, e.g.

scanIoInit(&ioscanpvt);

3. Provide the device support get_ioint_info routine. This routine has the format:
long get_ioint_info(

int cmd,
struct dbCommon *precord,

IOSCANPVT *ppvt);
This routine is called each time the record pointed to by precord is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. This routine must give a
value to *ppvt.

4. Whenever an I/O event is detected call scanIoRequest, e.g.
scanIoRequest(ioscanpvt)

This routine can be called from interrupt level. The request is actually directed to one of the standard callback
tasks. The actual one is determined by the PRIO field of dbCommon.

The following code fragment shows an event record device support module that supports I/O event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;

}devEventTestIoEvent={
5,
206 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview
NULL,
init,
NULL,
get_ioint_info,
NULL};

static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)
{
 scanIoRequest(ioscanpvt);
}

static long init()
{
 scanIoInit(&ioscanpvt);
 intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);
 return(0);
}
static long get_ioint_info(

int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)

{
 *ppvt = ioscanpvt;
 return(0);
}

18.4 Implementation Overview
The code for the entire scanning system resides in dbScan.c, i.e. periodic, event, and I/O event. This section gives an
overview of how the code in dbScan.c is organized. The listing of dbScan.c must be studied for a complete
understanding of how the scanning system works.

18.4.1 Definitions And Routines Common To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;
ELLLIST list;
short modified;
long ticks; /*used only for periodic scan sets*/

};

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon *precord;

}

EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 207

Chapter 18: Database Scanning
Implementation Overview
Later we will see how scan_lists are determined. For now just realize that scan_list.list is the head of a list of
records that belong to the same scan set (for example, all records that are periodically scanned at a 1 second rate are in the
same scan set). The node field in scan_element contain the list links. The normal vxWorks lstLib routines are used
to access the list. Each record that appears in some scan list has an associated scan_element. The SPVT field which
appears in dbCommon holds the address of the associated scan_element.

The lock, modified, and pscan_list fields allow scan_elements, i.e. records, to be dynamically removed and
added to scan lists. If scanList, the routine which actually processes a scan list, is studied it can be seen that these fields
allow the list to be scanned very efficiently if no modifications are made to the list while it is being scanned. This is, of
course, the normal case.

The dbScan.c module contains several private routines. The following access a single scan set:

• printList: Prints the names of all records in a scan set.

• scanList: This routine is the heart of the scanning system. For each record in a scan set it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnlock(precord);

It also has code to recognize when a scan list is modified while the scan set is being processed.

• addToList: This routine adds a new element to a scan list.

• deleteFromList: This routine deletes an element from a scan list.

18.4.2 Event Scanning

Event scanning is built around the following definitions:

#define MAX_EVENTS 256
typedef struct event_scan_list {

 CALLBACK callback;
 scan_list scan_list;

}event_scan_list;
static event_scan_list

*pevent_list[NUM_CALLBACK_PRIORITIES][MAX_EVENTS];

pevent_list is a 2d array of pointers to scan_lists. Note that the array allows for 256 events, i.e. one for each
possible event number. In other words, each event number and priority has its own scan list. No scan_list is actually
created until the first request to add an element for that event number. The event scan lists have the memory layout
illustrated in Figure 18-1.

Figure 18-1: Scan List Memory Layout

pevent_list[][]

...

event_scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

scan_element
 node
 . . .
 precord

. . .
208 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview
18.4.2.1 post_event

post_event(int event)

This routine is called to request event scanning. It can be called from interrupt level. It looks at each
event_scan_list referenced by pevent_list[*][event] (one for each callback priority) and if any elements are
present in the scan_list a callbackRequest is issued. The appropriate callback task calls routine
eventCallback, which just calls scanList.

18.4.3 I/O Event Scanning

I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;
struct scan_list scan_list;
struct io_scan_list *next;

}
static struct io_scan_list

 *iosl_head[NUM_CALLBACK_PRIORITIES]
= {NULL,NULL,NULL};

The array iosl_head and the field next are only kept so that scanpiol can be implemented and will not be discussed
further. I/O event scanning uses the general purpose callback tasks to perform record processing, i.e. no task is spawned
for I/O event. The callback field of io_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

18.4.3.1 scanIoInit

scanIoInit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source. scanIoInit allocates and
initializes an array of io_scan_list structures; one for each callback priority and puts the address in pioscanpvt.
Remember that three callback priorities are supported (low, medium, and high). Thus for each interrupt source the
structures are illustrated in Figure 18-1:

When scanAdd or scanDelete are called, they call the device support routine get_ioint_info which returns
pioscanpvt. The scan_element is added or deleted from the correct scan list.

18.4.3.2 scanIoRequest

scanIoRequest (IOSCANPVT pioscanpvt)

Figure 18-1: Interrupt Source Structure

pioscanpvt

...
io_scan_list
 .callback
 scan_list
 . . .

scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 209

Chapter 18: Database Scanning
Implementation Overview
This routine is called to request I/O event scanning. It can be called from interrupt level. It looks at each io_scan_list
referenced by pioscanpvt (one for each callback priority) and if any elements are present in the scan_list a
callbackRequest is issued. The appropriate callback task calls routine ioeventCallback, which just calls
scanList.

18.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskId;

nPeriodic, which is determined at iocInit time, is the number of periodic rates. papPeriodic is a pointer to an
array of pointers to scan_lists. There is an array element for each scan rate. Thus the structure illustrated in
Figure 18-1 exists after iocInit.

A periodic scan task is created for each scan rate. The following routines implement periodic scanning:

18.4.4.1 initPeriodic

initPeriodic()

This routine first determines the scan rates. It does this by accessing the SCAN field of the first record it finds. It issues a
call to dbGetField with a DBR_ENUM request. This returns the menu choices for SCAN. From this the periodic rates are
determined. The array of pointers referenced by papPeriodic is allocated. For each scan rate a scan_list is
allocated and a periodicTask is spawned.

18.4.4.2 periodicTask

periodicTask (struct scan_list *psl)

This task just performs an infinite loop of calling scanList and then calling taskDelay to wait until the beginning of
the next time interval.

18.4.5 Scan Once

18.4.5.1 scanOnce

void scanOnce (void *precord)

A task onceTask waits for requests to issue a dbProcess request. The routine scanOnce puts the address of the
record to be processed in a ring buffer and wakes up onceTask.

Figure 18-1: Structure after iocInit

papPeriodic

...
scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
scan_element
 node
 . . .
 precord
210 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview
This routine can be called from interrupt level.

18.4.5.2 SetQueueSize

scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It can be changed by
executing the following command in the vxWorks startup file.

int scanOnceSetQueueSize(int size);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 211

Chapter 18: Database Scanning
Implementation Overview
212 EPICS IOC Application Developer’s Guide

Chapter 19: IOC Shell

Eric Norum is the author of this chapter.

19.1 Introduction
The EPICS IOC shell is a simple command interpreter which provides a subset of the capabilities of the vxWorks shell. It
is used to interpret startup scripts (st.cmd) and to execute commands entered at the console terminal. In most cases
vxWorks startup scripts can be interpreted by the IOC shell without modification. The following sections of this chapter
describe the operation of the IOC shell from the user's and programmer's points of view.

19.2 IOC Shell Operation
The IOC shell reads lines of input, breaks them into commands and arguments and calls functions corresponding to the
decoded command. Commands and arguments are separated by one or more `space' characters. Characters interpreted as
spaces include the actual space character and the tab character as well as commas and open and close parentheses. Thus,
the command line

dbLoadRecords("db/dbExample1.db","user=mrk")

would be interpreted by the IOC shell as the dbLoadRecords command with arguments db/dbExample1.db and
user=mrk.

Unrecognized commands result in a diagnostic message but are otherwise ignored. Missing arguments are given a default
value (0 for numeric arguments, NULL for string arguments). Extra arguments are ignored.

Unlike the vxWorks shell, string arguments do not have to be enclosed in quotes unless they contain one or more of the
`space' characters in which case one of the quoting mechanisms described in the following section must be used.

19.2.1 Quoting

Quoting is used to remove the special meaning normally assigned to certain characters and can be used to include `space'
or quote characters in arguments. Quoting can not be used to extend a command over more than one input line.

There are three quoting mechanisms: the backslash character, single quotes, and double quotes. A backslash (\) preserves
the literal value of the following character. Enclosing characters in single or double quotes preserves the literal value of
each character (except a backslash) within the quotes. A single quote may occur between double quotes and a double
quote may occur between single quotes.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 213

Chapter 19: IOC Shell
IOC Shell Operation
19.2.2 Command-line editing and history

The IOC shell can use the readline library to obtain input from the console terminal. This provides full command-line
editing as well as easy access to previous commands through the command-line history capabilties provided by the
readline routines. See the readline library documentation for full details. Command and argument completion is not
supported.

If the readline library is not used, the only command-line editing and history capabilities will be those supplied by the
underlying operating system. The console keyboard driver in Windows, for example, provides its own command-line
editing and history commands.

19.2.3 Utility Commands

The IOC shell recognizes the following commands as well as the commands described in chapter 6 (Database Design) and
chapter 9 (IOC Test Facilities) among others. In addition, the commands described in the sequencer documentation are
recognized.

Command Description

< filename Read commands from filename until an exit command or EOF is encountered. The IOC shell then
resumes reading commands from the current source. Commands read from filename are not added to
the readline command history.
The level of nesting is limited only by the maximum number of files can be open simultaneously.

help [command ...] Print synopsis of specified commands.
With no arguments print a list of all commands.

A `#' in the first column of a line indicates the beginning of a comment which continues to the end of
the line

exit Stop reading commands. When the top-level command interpreter encounters an exit command or
end-of-file (EOF) it returns to its caller.

cd directory Change working directory to directory.

pwd Print the name of the working directory.

show [-level] [task ...] Show information about specified tasks. If no task arguments are present, show information on all
tasks. The level argument controls the amount of information printed. The default level is 0. The
task arguments can be task names or task i.d. numbers.

epicsEnvSet name value Set environment variable name to the specified value.

epicsEnvShow [name] If no name is specified the names and values of all environment variables will be shown.
If a name is specified the value of that environment variable will be shown.

epicsParamShow Show names and values of all EPICS configuration parameters.

iocLogInit Initialize IOC logging.

epicsThreadSleep sec Pause execution of IOC shell for sec seconds.
214 EPICS IOC Application Developer’s Guide

Chapter 19: IOC Shell
IOC Shell Programming
19.2.4 ENVIRONMENT VARIABLES

The IOC shell uses the following environment variables to control its operation.

19.3 IOC Shell Programming
The declarations described in this section are included in the <iocsh.h> header file.

19.3.1 Invoking the IOC shell

The prototype for the IOC shell command interpreter is:

int iocsh (const char *pathname);

The argument is the name of the file from which commands are to be read. If the pathname argument is NULL,
commands are read from the standard input and prompts are issued to the standard output. Commands are read until an
exit command is encountered or until end-of-file is reached at which point iocsh returns a value of 0. If the specified file
can not be opened iocsh returns -1.

19.3.2 Registering Commands

Commands must be registered before they can be recognized by the IOC shell. Registration is achieved by calling the
registration function:

 void iocshRegister(const iocshFuncDef *piocshFuncDef, iocshCallFunc func);

The first argument is a pointer to a data structure which describes the command and any arguments it may take. The
second argument is a pointer to a function which will be called by iocsh when the corresponding command is
encountered.

The command is described by the iocshFuncDef structure:

struct iocshFuncDef {
 const char *name;
 int nargs;
 const iocshArg * const *arg;
};

The name element is the name of the command. The arg element is a pointer to an array of pointers to structures each of
which defines a single argument. The nargs element declares the number of entries in the array of pointers to the
argument descriptions. The structures which define each of the arguments is:

Variable Description

IOCSH_PS1 Prompt string. Default is "epics> ".

IOCSH_HISTSIZE Number of previous command lines to remember. If the IOCSH_HISTSIZE environment variable is not
present the value of the HISTSIZE environment variable is used. In the absence of both environment
variables, 10 command lines will be remembered.

TERM, INPUTRC These and other environment variables are used by the readline and termcap libraries and are described in
the documentation for those libraries.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 215

Chapter 19: IOC Shell
IOC Shell Programming
struct iocshArg {
 const char *name;
 iocshArgType type;
}iocshArg;

The name element is used by the help command to print a synopsis for the command. The type element describes the type
of the argument and takes one of the following values:

The `handler' function which is called when its corresponding command is recognized should be of the form:

 void showCallFunc(const iocshArgBuf *args);

The argument to the handler function is a pointer to an array of unions. The number of elements in this array is equal to
the number of arguments specified in the structure describing the command. The type and name of the union element
which contains the argument value depends on the `type' element of the corresponding argument descriptor:

If an iocshArgArgv argument type is present it is usually the first and only argument specified for the command. In
this case, args[0].aval.av[0] will be the name of the command, args[0].aval.av[1] will be the first
argument, and so on.

19.3.3 Automatic Command Registration

A C++ static constructor can be used to register IOC shell commands before the EPICS application begins. The following
example shows how the `<' command could be described and registered.

#include "iocsh.h"

static const iocshArg runScriptArg0 = { "command file name",iocshArgString};
static const iocshArg * const runScriptArgs[1] = {&runScriptArg0};
static const iocshFuncDef runScriptFuncDef = {"<",1,runScriptArgs};

Type Specifier Description

iocshArgInt The argument will be converted to an integer value.

iocshArgDouble The argument will be converted to a double-precision floating point
value.

iocshArgString The argument will be left as a string.

iocshArgPdbbase The argument must be pdbbase.

iocshArgArgv An arbitrary number of arguments is expected. Subsequent iocshArg
structures will be ignored.

Type Specifier Type Union element

iocshArgInt int args[i].ival

iocshArgDouble double args[i].dval

iocshArgString char * args[i].sval

iocshArgPdbbase void * args[i].vval

iocshArgArgv int
char **

args[i].aval.ac
args[i].aval.av
216 EPICS IOC Application Developer’s Guide

Chapter 19: IOC Shell
IOC Shell Programming
static void runScriptCallFunc(const iocshArgBuf *args)
{
 iocsh (args[0].sval);
}

class IocshRegister {
 public:
 IocshRegister() { iocshRegister(runScriptFuncDef,runScriptCallFunc); }
};
static IocshRegister iocshRegisterObj;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 217

Chapter 19: IOC Shell
IOC Shell Programming
218 EPICS IOC Application Developer’s Guide

Chapter 20: libCom

This chapter and the next describe the facilities provided in <base>/src/libCom. This chapter describes facilities
which are platform independent. The next chapter describes facilities which have different implementations on different
platforms.

20.1 bucketLib
bucketLib.h describes a hash facility for integers, pointers, and strings. It is used by the Channel Access Server. It is
currently undocumented.

20.2 calc
postfix.h defines routines used by the calculation record type calcRecord, access security, and other code. Read the
description of the calcRecord in the Record Reference Manual to see a description of what is supported.

long postfix(char *pinfix, char *ppostfix, short *perror);
long calcPerform(double *parg, double *presult, char *ppostfix);

The caller calls postfix() to convert the expression from infix to postfix notation. It is the callers’s responsibility to make
sure that ppostfix points to sufficient storage to hold the postfix expression. The calcRecord uses an array of size 200.

The arguments to calcPerform() are:

parg - The address of a array of doubles containing the arguments A-L that can appear in the expression.
presult - The address of the calculation result of calling calcPerform().
ppostfix - The postfix expression created by postfix().

sCalcPostfix.h contains definitions for code that adds string manipulation facilities in addition to the facilities
supported by postfix.h

20.3 cppStd
This subdirectory of libCom is intended for facilities such as class and function templates that implement parts of the ISO
standard C++ library where such facilities are not available or not efficient on all the target platforms on which EPICS is
supported. Eventually it is hoped that these files will not be required, although the speed of some standard library
implementations may prevent their removal in all cases.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 219

Chapter 20: libCom
cppStd
20.3.1 epicsList

epicsList.h provides a C++ doubly-linked list template class that has been optimized for speed while remaining
compatible with the the std::list template from the standard C++ header list. The epicsList template provides most of
the functionality of std::list but omits some of the more esoteric member functions, can only be instantiated for pointer
types (integers may also work but have not been tested), and cannot be assigned or copied. This requires the application to
manage the creation and destruction of objects that are inserted or removed from the list, but because only pointers are
stored such objects do not have to be assignable or default-constructable. Detailed information on the list and iterator
member functions can be found in any recent C++ textbook that covers the final ISO standard C++ library.

template <class T>
class epicsList {
public:
 typedef size_t size_type;
 class iterator;
 class const_iterator;

 epicsList();
 ~epicsList();

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

 bool empty() const;
 size_type size() const;

 T front();
 const T front() const;
 T back();
 const T back() const;

 void push_front(const T x);
 void pop_front();
 void push_back(const T x);
 void pop_back();

 iterator insert(iterator position, const T x);
 iterator erase(iterator position);
 iterator erase(iterator position, iterator leave);
 void swap(epicsList<T>& x);
 void clear();
private:
 ...
};

Method Meaning

epicsList() Create a new, empty list.

~epicsList() Destructor, releases list nodes back to central pool.
220 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
cppStd
template <class T>
 inline void swap(epicsList<T>& x, epicsList<T>& y);
template <class T>
 inline void epicsSwap(epicsList<T>& x, epicsList<T>& y);

The two convenience template functions given above define the common algorithms swap(a, b) and epicsSwap(a, b) for
epicsList template classes.

The list template provides two iterator classes which are used to step through the list and have the functionality shown in
the table below. Note that a const_iterator cannot be used to modify an object it refers to, being analagous to a const
pointer, but is otherwise interchangable with a normal iterator in the expressions below unless stated otherwise.

begin() Returns an iterator or const_iterator for the first item on the list.

end() Returns an iterator or const_iterator that is one beyond the last item on the list.

empty() Returns true if list contains no items.

size() Number of elements the list contains.

front() Returns the first item on the list.

back() Returns the last item on the list.

push_front(const T x) Pushes x onto the front of the list (x becomes the new first element).

pop_front() Removes the first item from the list (returns nothing).

push_back(const T x) Pushes x onto the back of the list (x becomes the new last element).

pop_back() Removes the last item from the list (returns nothing).

insert(iterator pos, const T x) Insert new element x immediately before pos, returns an iterator referring to x.

erase(iterator pos) Remove list element at pos, returns iterator for the following element or end().

erase(iterator pos, iterator leave) Remove list elements from pos up to but excluding leave.

swap(epicsList<T>& x) Swap contents of this list with list x.

clear() Remove all items from list.

Expression Meaning

epicsList<T>::iterator it_a; Constructs it_a , which initially points nowhere.

epicsList<T>::iterator it_b = it_a; Copy constructor, it_a and it_b now refer to the same element (maybe nowhere!).

epicsList<T>::const_iterator cit_a = it_a A const_iterator can be copy-constructed from a mutable iterator, but not vice-versa.

it_a = it_b Iterator assignment is allowed, the operator=() being compiler generated.

cit_a = it_b A mutable iterator can be assigned to a const_iterator, but not the reverse.

*it_a Dereference, returns the list object at the iterator’s current position. Note that this
returns a copy of the list object, not a reference to it so (unlike a std::list<T>::iterator
where T is a pointer) you can’t use an iterator to modify the pointer that the list holds.

it_b->member Dereference as for *it_a, gives access to member data and functions of class *T

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 221

Chapter 20: libCom
cvtFast
20.3.2 epicsAlgorithm

epicsAlgorithm.h contains a few templates that are also available in the C++ standard header algorithm, but are
provided here in a much smaller file – algorithm contains many templates for sorting and searching. If all you need
from there is std::min(), std::max() and/or std::swap() your code will compile faster if you include epicsAlgorithm.h
and use epicsMin(), epicsMax() and epicsSwap() instead.

20.3.3 epicsExcept

epicsExcept.h contains definitions and macros that can be used to throw an exception along with source file and line
number information indicating where the exception arose. Although similar to the functionality provided in the header file
locationException.h this version allows all such exceptions to be caught and reported by single a handler that does
not have to use C++ Run-Time Type Identification. Any C++ exception class may be used in conjuntion with this facility,
including those defined in stdexcept.

FIXME: This should be merged into locationException.h, it doesn’t belong here
anyway - ANJ

20.4 cvtFast
cvtFast.h provides routines for converting various numeric types into an ascii string. They offer a combination of
speed and convenience not available with sprintf().

/* These functions return the number of ASCII characters generated */
int cvtFloatToString(float value, char *pstr, unsigned short precision);
int cvtDoubleToString(double value, char *pstr, unsigned short prec);
int cvtFloatToExpString(float value, char *pstr, unsigned short prec);
int cvtDoubleToExpString(double value, char *pstr, unsigned short prec);
int cvtFloatToCompactString(float value, char *pstr, unsigned short prec);

it_a++ Steps iterator to next list item but returns a temporary iterator that refers to the original
list item. Because of this temporary, where possible use the pre-increment form below.

++it_b Steps iterator to the next list item and returns a reference to itself.

it_a-- Steps iterator to the previous list item but returns a temporary iterator that refers to the
original list item. As before, where possible use the pre-decrement form below.

--it_b Steps iterator to the previous list item and returns a reference to itself.

(it_a == it_b), (it_a != it_b) Iterators are (in)equality-comparable, but not less-than or grater-than comparable.

Expression Meaning

template <class T> Meaning

const T& epicsMin(const T& a, const T& b) Returns the smaller of a or b compared using a<b.

const T& epicsMax(const T& a, const T& b) Returns the larger of a or b compared using a<b.

void epicsSwap(T& a, T& b) Swaps the values of a and b; T must have a copy-constructor and operator=.
222 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
cxxTemplates
int cvtDoubleToCompactString(double value, char *pstr, unsigned short prec);
int cvtCharToString(char value, char *pstring);
int cvtUcharToString(unsigned char value, char *pstr);
int cvtShortToString(short value, char *pstr);
int cvtUshortToString(unsigned short value, char *pstr);
int cvtLongToString(long value, char *pstr);
int cvtUlongToString(unsigned long value, char *pstr);
int cvtLongToHexString(long value, char *pstr);
int cvtLongToOctalString(long value, char *pstr);
unsigned long cvtBitsToUlong(
 unsigned long src,
 unsigned bitFieldOffset,
 unsigned bitFieldLength);
unsigned long cvtUlongToBits(
 unsigned long src,
 unsigned long dest,
 unsigned bitFieldOffset,
 unsigned bitFieldLength);

20.5 cxxTemplates
This directory contains the following C++ template headers:

• resourceLib.h - A C++ hash facility that implements the same functionality as bucketLib

• tsBTree.h - Binary tree.

• tsDLList.h - Double Linked List

• tsFreeList.h - Free List for efficient new/delete

• tsMinMax.h - min and max.

• tsSLList.h - Single Linked List

Currently these are only being used by Channel Access Clients and the portable Channel Access Server. It has not been
decided if any of these will remain in libCom.

20.6 dbmf
dbmf.h (Database Macro/Free) describes a facility that prevents memory fragmentation when memory is allocated and
then freed a short time later.

Routines within iocCore like dbLoadDatabase() have the following attributes:

• They issue many calls to malloc() followed a short time later by a call to free().

• Between a call to malloc() and the associated free(), an additional call to malloc() is made that does NOT have an
associated free().

In some environments, e.g. vxWorks, this behavior causes severe memory fragmentation.

The dbmf facility stops the memory fragmentation. It should NOT be used by code that allocates storage and then keeps it
for a considerable period of time before releasing. Such code can use the freeList library described below.

int dbmfInit(size_t size, int chunkItems);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 223

Chapter 20: libCom
ellLib
void *dbmfMalloc(size_t bytes);
void dbmfFree(void* bytes);
void dbmfFreeChunks(void);
int dbmfShow(int level);

20.7 ellLib
ellLib.h describes a double linked list library. It provides functionality similar to the vxWorks lstLib library. See the
vxWorks documentation for details. There is an ellXXX() routine to replace most vxWorks lstXXX() routines.

New code that is written in C++ should seriously consider using the epicsList template class instead of ellLib.

typedef struct ELLNODE {
 struct ELLNODE *next;
 struct ELLNODE *previous;
}ELLNODE;

typedef struct ELLLIST {
 ELLNODE node;
 int count;
void ellInit (ELLLIST *pList);
int ellCount (ELLLIST *pList);
ELLNODE *ellFirst (ELLLIST *pList);
ELLNODE *ellLast (ELLLIST *pList);
ELLNODE *ellNext (ELLNODE *pNode);
ELLNODE *ellPrevious (ELLNODE *pNode);
void ellAdd (ELLLIST *pList, ELLNODE *pNode);
void ellConcat (ELLLIST *pDstList, ELLLIST *pAddList);
void ellDelete (ELLLIST *pList, ELLNODE *pNode);
void ellExtract (ELLLIST *pSrcList, ELLNODE *pStartNode,
 ELLNODE *pEndNode, ELLLIST *pDstList);
ELLNODE *ellGet (ELLLIST *pList);
void ellInsert (ELLLIST *plist, ELLNODE *pPrev, ELLNODE *pNode);
ELLNODE *ellNth (ELLLIST *pList, int nodeNum);
ELLNODE *ellNStep (ELLNODE *pNode, int nStep);

Routine Meaning

dbmfInit() Initialize the facility. Each time malloc() must be called size*chunkItems bytes are
allocated. size is the maximum size request from dbmfMalloc() that will be allocated from the
dbmf pool. If dbmfInit() was not called before one of the other routines then it is automatically
called with size=64 and chuckItems=10.

dbmfMalloc() Allocate memory. If bytes is > size then malloc() is used to allocate the memory.

dbmfFree() Free the memory allocated by dbmfMalloc().

dbmfFreeChunks() Free all chunks that have contain only free items.

dbmfShow() Show the status of the dbmf memory pool.
224 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
epicsRingBytes
int ellFind (ELLLIST *pList, ELLNODE *pNode);
void ellFree (ELLLIST *pList);
void ellVerify (ELLLIST *pList);

20.8 epicsRingBytes
epicsRingBytes.h contains

epicsRingBytesId epicsRingBytesCreate(int nbytes);
void epicsRingBytesDelete(epicsRingBytesId id);
int epicsRingBytesGet(epicsRingBytesId id, char *value,int nbytes);
int epicsRingBytesPut(epicsRingBytesId id, char *value,int nbytes);
void epicsRingBytesFlush(epicsRingBytesId id);
int epicsRingBytesFreeBytes(epicsRingBytesId id);
int epicsRingBytesUsedBytes(epicsRingBytesId id);
int epicsRingBytesSize(epicsRingBytesId id);
int epicsRingBytesIsEmpty(epicsRingBytesId id);
int epicsRingBytesIsFull(epicsRingBytesId id);

epicsRingBytes has the following properties:

• For a ring buffer with a single writer it is not necessary to lock epicsRingBytesPut() calls.

• For a ring buffer with a single reader it is not necessary to lock epicsRingBytesGet() calls.

• epicsRingBytesFlush() should only be used when both gets and puts are locked out.

20.9 epicsRingPointer
epicsRingPointer.h describes a C++ and a C facility for a commonly used type of ring buffer.

Method Meaning

epicsRingBytesCreate() Create a new ring buffer of size nbytes. The returned epicsRingBytesId is passed to the other ring
methods.

epicsRingBytesDelete() Delete the ring buffer and free any associated memory.

epicsRingBytesGet() Move up to nbytes from the ring buffer to value. The number of bytes actually moved is returned.

epicsRingBytesPut() Move up to nbytes from value to the ring buffer. The number of bytes actually moved is returned.

epicsRingBytesFlush() Make the ring buffer empty.

epicsRingBytesFreeBytes() Return the number of free bytes in the ring buffer.

epicsRingBytesUsedBytes() Return the number of bytes currently stored in the ring buffer.

epicsRingBytesSize() Return the size of the ring buffer, i.e., nbytes specified in the call to epicsRingBytesCreate().

epicsRingBytesIsEmpty() Return (true, false) if the ring buffer is currently empty.

epicsRingBytesIsFull() Return (true, false) if the ring buffer is currently empty.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 225

Chapter 20: libCom
epicsRingPointer
20.9.1 C++ Interface

EpicsRingPointer provides methods for creating and using ring buffers (first in first out circular buffers) that store
pointers. It is designed so that a writer thread and reader thread can access the ring simultaneously without requiring
mutual exclusion.

template <class T>
class epicsRingPointer {
public:
 epicsRingPointer(int size);
 ~epicsRingPointer();
 bool push(T *p);
 T* pop();
 void flush();
 int getFree() const;
 int getUsed() const;
 int getSize() const;
 bool isEmpty() const;
 bool isFull() const;

private: // Prevent compiler-generated member functions
 // default constructor, copy constructor, assignment operator
 epicsRingPointer();
 epicsRingPointer(const epicsRingPointer &);
 epicsRingPointer& operator=(const epicsRingPointer &);

private: // Data
 ...
};

An epicsRingPointer cannot be assigned to, copy-constructed, or constructed without giving the size argument. The C++
compiler will object to some of the statements below:

epicsRingPointer rp0(); // Error: default constructor is private
epicsRingPointer rp1(10); // OK
epicsRingPointer rp2(t1); // Error: copy constructor is private
epicsRingPointer *prp; // OK, pointer
*prp = rp1; // Error: assignment operator is private
prp = &rp1; // OK, pointer assignment and address-of

Method Meaning

epicsRingPointer() Constructor. The size is the maximum number of elements (pointers) that can be stored in the
ring.

~epicsRingPointer() Destructor.

push() Push a new entry on the ring. It returns (false,true) is (successful, failed). Failure means the ring
was full. If a single writer is present it does not have to use a lock while performing the push. If
multiple writers are present they must use a common lock while issuing the push.

pop() Take a element off the ring. It returns 0 (null) if the ring was empty. If a single reader is present it
does not have to lock while issuing the pop. If multiple readers are present they must use a
common lock while issuing the pop.
226 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
epicsTimer
20.9.2 C interface
typedef void *epicsRingPointerId;
 epicsRingPointerId epicsRingPointerCreate(int size);
 void epicsRingPointerDelete(epicsRingPointerId id);
 /*epicsRingPointerPop returns 0 if the ring was empty */
 void * epicsRingPointerPop(epicsRingPointerId id) ;
 /*epicsRingPointerPush returns (0,1) if p (was not, was) put on ring*/
 int epicsRingPointerPush(epicsRingPointerId id,void *p);
 void epicsRingPointerFlush(epicsRingPointerId id);
 int epicsRingPointerGetFree(epicsRingPointerId id);
 int epicsRingPointerGetUsed(epicsRingPointerId id);
 int epicsRingPointerGetSize(epicsRingPointerId id);
 int epicsRingPointerIsEmpty(epicsRingPointerId id);
 int epicsRingPointerIsFull(epicsRingPointerId id);

Each C function corresponds to one of the C++ methods.

20.10 epicsTimer
epicsTimer.h describes a C++ and a C timer facility.

20.10.1 C++ Interface

20.10.1.1 epicsTimerNotify and epicsTimer

class epicsTimerNotify {
public:
 enum restart_t { noRestart, restart };
 class expireStatus {
 public:
 expireStatus (restart_t);
 expireStatus (restart_t, const double &expireDelaySec);
 bool restart () const;
 double expirationDelay () const;
 private:

flush() Remove all elements from the ring. If this operation is performed then all access to the ring
should be locked.

getFree() Return the amount of empty space in the ring, i.e. how many additional elements it can hold.

getUsed() Return the number of elements stored on the ring

getSize() Return the size of the ring, i.e. the value of size specified when the ring was created.

isEmpty() Returns true if the ring is empty, else false.

isFull() Returns true if the ring is full, else false.

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 227

Chapter 20: libCom
epicsTimer
 bool again;
 double delay;
 };
 // return noRestart OR return expireStatus (restart, 30.0 /* sec */);
 virtual expireStatus expire (const epicsTime & currentTime) = 0;
 virtual epicsShareFunc void show (unsigned int level) const;
};

class epicsTimer {
public:
 virtual void destroy () = 0; // requires existence of timer queue
 virtual void start (epicsTimerNotify &, const epicsTime &) = 0;
 virtual void start (epicsTimerNotify &, double delaySeconds) = 0;
 virtual void cancel () = 0;
 struct expireInfo {
 expireInfo (bool active, const epicsTime & expireTime);
 bool active;
 epicsTime expireTime;
 };
 virtual expireInfo getExpireInfo () const = 0;
 double getExpireDelay ();
 virtual void show (unsigned int level) const = 0;
protected:
 virtual ~epicsTimer () = 0; // use destroy
};

Method Meaning

epicsTimerNotify
expire()

Code using an epicsTimer must include a class that inherits from epicsTimerNotify. The derived
class must implement the method expire(), which is called by the epicsTimer when the associated
timer expires. epicsTimerNotify defines a class expireStatus which makes it easy to implement
both one shot and periodic timers. A one-shot expire() returns with the statement:
 return(noRestart);
A periodic timer returns with a statement like:
 return(restart,10.0);
where is second argument is the delay until the next callback.

epicsTimer epicsTimer is an abstract base class. An epics timer can only be created by calling
createTimer, which is a method of epicsTimerQueue.

destroy This is provided instead of a destructor. This will automatically call cancel before freeing all
resources used by the timer.

start() Starts the timer to expire either at the specified time or the specified number of seconds in the
future. If the timer is already active when start is called, it is first canceled.

cancel() If the timer is scheduled, cancel it. If it is not scheduled do nothing. Note that if the expire()
method is already running, this call delays until the expire() completes.

getExpireInfo Get expireInfo, which says if timer is active and if so when it expires.

getExpireDelay() Return the number of seconds until the timer will expire. If the timer is not active it returns
DBL_MAX

show() Display info about object.
228 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
epicsTimer
20.10.1.2 epicsTimerQueue

class epicsTimerQueue {
public:
 virtual epicsTimer & createTimer () = 0;
 virtual void show (unsigned int level) const = 0;
protected:
 virtual ~epicsTimerQueue () = 0;
};

20.10.1.3 epicsTimerQueueActive

class epicsTimerQueueActive : public epicsTimerQueue {
public:
 static epicsShareFunc epicsTimerQueueActive & allocate (
 bool okToShare, unsigned threadPriority = epicsThreadPriorityMin + 10);
 virtual void release () = 0;
protected:
 virtual ~epicsTimerQueueActive () = 0;
};

20.10.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

These two classes manage a timer queue for single threaded applications. Since it is single threaded, the application is
responsible for requesting that the queue be processed.

class epicsTimerQueueNotify {
public:
 // called when a new timer is inserted into the queue and the
 // delay to the next expire has changed
 virtual void reschedule () = 0;
};

class epicsTimerQueuePassive {
public:
 static epicsTimerQueuePassive & create (epicsTimerQueueNotify &);
 virtual ~epicsTimerQueuePassive () = 0;
 // process returns the delay to the next expire
 virtual double process (const epicsTime & currentTime) = 0;

Method Meaning

createTimer() This is a "factory" method to create timers which use this queue.

show() Display info about object

Method Meaning

allocater() This is a "factory" method to create a timer queue.

release() Release the queue, i.e. the calling facility will no longer use the queue. The caller MUST ensure
that it does not own any active timers. When the last facility using the queue calls release, all
resources used by the queue are freed.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 229

Chapter 20: libCom
epicsTimer
};

20.10.2 C Interface
typedef struct epicsTimerForC * epicsTimerId;
typedef void (*epicsTimerCallback) (void *pPrivate);

/* thread managed timer queue */
typedef struct epicsTimerQueueActiveForC * epicsTimerQueueId;
epicsShareFunc epicsTimerQueueId epicsShareAPI
 epicsTimerQueueAllocate (int okToShare, unsigned int threadPriority);
epicsShareFunc void epicsShareAPI
 epicsTimerQueueRelease (epicsTimerQueueId);
epicsShareFunc epicsTimerId epicsShareAPI
 epicsTimerQueueCreateTimer (epicsTimerQueueId queueid,
 epicsTimerCallback callback, void *arg);
epicsShareFunc void epicsShareAPI
 epicsTimerQueueDestroyTimer (epicsTimerQueueId queueid, epicsTimerId id);
epicsShareFunc void epicsShareAPI
 epicsTimerQueueShow (epicsTimerQueueId id, unsigned int level);

/* passive timer queue */
typedef struct epicsTimerQueuePassiveForC * epicsTimerQueuePassiveId;
typedef void (*epicsTimerQueueRescheduleCallback) (void *pPrivate);
epicsShareFunc epicsTimerQueuePassiveId epicsShareAPI
 epicsTimerQueuePassiveCreate (epicsTimerQueueRescheduleCallback, void
*pPrivate);
epicsShareFunc void epicsShareAPI
 epicsTimerQueuePassiveDestroy (epicsTimerQueuePassiveId);
epicsShareFunc epicsTimerId epicsShareAPI
 epicsTimerQueuePassiveCreateTimer (

epicsTimerQueuePassiveId queueid, epicsTimerCallback pCallback, void *pArg
);
epicsShareFunc void epicsShareAPI
 epicsTimerQueuePassiveDestroyTimer (epicsTimerQueuePassiveId queueid,

Method Meaning

epicsTimerQueueNotify
reschedule()

This class has a single method reschedule(). It is called whenever a new timer is inserted into the
queue or the delay to the next expire is changed.

epicsTimerQueuePassive epicsTimerQueuePassive is an abstract base class so cannot be instantiated directly, but contains a
static member function to create a concrete passive timer queue object of a (hidden) derived class.

create() A "factory" method to create a non-threaded timer queue. The calling software also passes an object
derived from epicsTimerQueueNotify to receive reschedule() callbacks.

~epicsTimerQueuePassive() Destructor. The caller MUST ensure that it does not own any active timers, i.e. it must cancel any
active timers before deleting the epicsTimerQueuePassive object.

process() This calls expire() for all timers that have expired. The facility that creates the queue MUST call
this. It returns the delay until the next timer will expire.
230 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
epicsTimer
epicsTimerId id);
epicsShareFunc double epicsShareAPI
 epicsTimerQueuePassiveProcess (epicsTimerQueuePassiveId);
epicsShareFunc void epicsShareAPI epicsTimerQueuePassiveShow (
 epicsTimerQueuePassiveId id, unsigned int level);

/* timer */
epicsShareFunc void epicsShareAPI
 epicsTimerStartTime (epicsTimerId id, const epicsTimeStamp *pTime);
epicsShareFunc void epicsShareAPI
 epicsTimerStartDelay (epicsTimerId id, double delaySeconds);
epicsShareFunc void epicsShareAPI
 epicsTimerCancel (epicsTimerId id);
epicsShareFunc double epicsShareAPI
 epicsTimerGetExpireDelay (epicsTimerId id);
epicsShareFunc void epicsShareAPI
 epicsTimerShow (epicsTimerId id, unsigned int level);

The C interface provides most of the facilities as the C++ interface. It does not support the periodic timer features.

20.10.3 Example

This example allocates a timer queue and two objects which have a timer that uses the queue. Each object is requested to
schedule itself. The expire() callback just prints the name of the object. After scheduling each object the main thread just
sleeps long enough for each expire to occur and then just returns after releasing the queue.

#include <stdio.h>
#include "epicsTimer.h"

class something : public epicsTimerNotify {
public:
 something(const char* nm,epicsTimerQueueActive &queue)
 : name(nm), timer(queue.createTimer()) {}
 virtual ~something() { timer.destroy();}
 void start(double delay) {timer.start(*this,delay);}
 virtual expireStatus expire(const epicsTime & currentTime) {
 printf("%s\n",name);
 currentTime.show(1);
 return(noRestart);
 }
private:
 const char* name;
 epicsTimer &timer;
};

void epicsTimerExample()
{
 epicsTimerQueueActive &queue = epicsTimerQueueActive::allocate(true);
 something first("first",queue);
 something second("second",queue);

 first.start(1.0);
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 231

Chapter 20: libCom
fdmgr
 second.start(1.5);
 epicsThreadSleep(2.0);
 queue.release();
}

20.11 fdmgr
File Descriptor Manager. fdManager.h describes a C++ implementation. fdmgr.h describes a C implementation.
Neither is currently documented.

20.12 freeList
freeList.h describes routines to allocate and free fixed size memory elements. Free elements are maintained on a
free list rather then being returned to the heap via calls to free. When it is necessary to call malloc(), memory is allocated
in multiples of the element size.

void freeListInitPvt(void **ppvt, int size, int nmalloc);
void *freeListCalloc(void *pvt);
void *freeListMalloc(void *pvt);
void freeListFree(void *pvt, void*pmem);
void freeListCleanup(void *pvt);
size_t freeListItemsAvail(void *pvt);

where

pvt - For internal use by the freelist library. Caller must provide storage for a "void *pvt"
size - Size in bytes of each element. Note that all elements must be same size
nmalloc - Number of elements to allocate when regular malloc() must be called.

20.13 gpHash
gpHash.h describes a general purpose hash table for character strings. The hash table contains tableSize entries. Each
entry is a list of members that hash to the same value. The user can maintain separate directories which share the same
table by having a different pvt value for each directory.

typedef struct{
 ELLNODE node;
 const char *name; /*address of name placed in directory*/
 void *pvtid; /*private name for subsystem user*/
 void *userPvt; /*private for user*/
} GPHENTRY;

/*tableSize must be power of 2 in range 256 to 65536*/
void gphInitPvt(void **ppvt,int tableSize);
GPHENTRY *gphFind(void *pvt,const char *name,void *pvtid);
GPHENTRY *gphAdd(void *pvt,const char *name,void *pvtid);
void gphDelete(void *pvt,const char *name,void *pvtid);
232 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
logClient
void gphFreeMem(void *pvt);
void gphDump(void *pvt);

where

pvt - For internal use by the gpHash library. Caller must provide storage for a "void *pvt"
name - The character string that will be hashed and added to table.
pvtid - The name plus value of this pointer constitute a unique entry.

20.14 logClient
The iocLog client. This does not really belong in libCom.

20.15 macLib
macLib.h describes a general purpose macro substitution library. It is used for all macro substitution in base.

long macCreateHandle(
 MAC_HANDLE **handle, /* address of variable to receive pointer */
 /* to new macro substitution context */
 char *pairs[] /* pointer to NULL-terminated array of */
 /* {name,value} pair strings; a NULL */
 /* value implies undefined; a NULL */
 /* argument implies no macros */
);

void macSuppressWarning(
 MAC_HANDLE *handle, /* opaque handle */
 int falseTrue /*0 means ussue, 1 means suppress*/
);

/*following returns #chars copied, <0 if any macros are undefined*/
long macExpandString(
 MAC_HANDLE *handle, /* opaque handle */
 char *src, /* source string */
 char *dest, /* destination string */
 long maxlen /* maximum number of characters to copy */
 /* to destination string */
);

/*following returns length of value */
long macPutValue(
 MAC_HANDLE *handle, /* opaque handle */
 char *name, /* macro name */
 char *value /* macro value */
);

/*following returns #chars copied (<0 if undefined) */
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 233

Chapter 20: libCom
misc
long macGetValue(
 MAC_HANDLE *handle, /* opaque handle */
 char *name, /* macro name or reference */
 char *value, /* string to receive macro value or name */
 /* argument if macro is undefined */
 long maxlen /* maximum number of characters to copy */
 /* to value */
);

long macDeleteHandle(MAC_HANDLE *handle);
long macPushScope(MAC_HANDLE *handle);
long macPopScope(MAC_HANDLE *handle);
long macReportMacros(MAC_HANDLE *handle);

/* Function prototypes (utility library) */

/*following returns #defns encountered; <0 = ERROR */
long macParseDefns(
 MAC_HANDLE *handle, /* opaque handle; can be NULL if default */
 /* special characters are to be used */
 char *defns, /* macro definitions in "a=xxx,b=yyy" */
 /* format */
 char **pairs[] /* address of variable to receive pointer */
 /* to NULL-terminated array of {name, */
 /* value} pair strings; all storage is */
 /* allocated contiguously */
);

/*following returns #macros defined; <0 = ERROR */
long macInstallMacros(MAC_HANDLE *handle,
 char *pairs[] /* pointer to NULL-terminated array of */
 /* {name,value} pair strings; a NULL */
 /* value implies undefined; a NULL */
 /* argument implies no macros */
);

NOTE: The directory <base>/src/libCom/macLib contains two files macLibNOTES and macLibREADME that explain
this library.

20.16 misc

20.16.1 aToIPAddr

The function prototype for this routine appears in osiSock.h

int aToIPAddr(const char *pAddrString, unsigned short defaultPort,
 struct sockaddr_in *pIP);

aToIPAddr() fills in the structure pointed to by the pIP argument with the Internet address and port number specified by
the pAddrString argument.
234 EPICS IOC Application Developer’s Guide

Chapter 20: libCom
misc
Three forms of pAddrString are accepted:

1. n.n.n.n:p
The Internet address of the host, specified as four numbers separated by periods.

2. xxxxxxxx:p
The Internet address number of the host, specified as a single number.

3. hostname:p
The Internet host name of the host.

In all cases the ‘:p’ may be omitted in which case the port number is set to the value of the defaultPort argument. All
numbers are read in base 16 if they begin with ‘0x’ or ‘0X’, in base 8 if they begin with ‘0’, and in base 10 otherwise.

20.16.2 adjustment

adjustment.h describes a single function:

size_t adjustToWorstCaseAlignment(size_t size);

adjustToWorstCaseAlignment() returns a value >= size that an exact multiple of the worst case alignment for the
architecture on which the routine is executed.

20.16.3 cantProceed

cantProceed.h describes routines that are provided for code that can’t proceed when an error occurs.

void cantProceed(const char *errorMessage);
void *callocMustSucceed(size_t count, size_t size,const char *errorMessage);
void *mallocMustSucceed(size_t size, const char *errorMessage);

cantProceed() issues the error message and does not return. callocMustSucceed() and mallocMustSucceed() can be used
in place of calloc() and malloc(). If they fail they just call cantProceed().

20.16.4 dbDefs

dbDefs.h contains definitions that are still used in base but should not be. Hopefully these all go away some day. This
has been the hope for about ten years.

20.16.5 epicsString

epicsString.h currently describes a single function.

int dbTranslateEscape(char *dst, const char *src);

dbTranslateEscape() copies the string src to dst while substituting escape sequences. It returns the length of the resultant
string (which may contain null bytes). The caller must ensure that the buffer dst is large enough.

20.16.6 epicsTypes

epicsTypes.h provides typedefs for architecture independent data types.

typedef char epicsInt8;
typedef unsigned char epicsUInt8;
typedef short epicsInt16;
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 235

Chapter 20: libCom
misc
typedef unsigned short epicsUInt16;
typedef epicsUInt16 epicsEnum16;
typedef int epicsInt32;
typedef unsigned epicsUInt32;
typedef float epicsFloat32;
typedef double epicsFloat64;
typedef unsigned long epicsIndex;
typedef epicsInt32 epicsStatus;

So far the definitions provided in this header file have worked on all architectures. In addition to the above definitions
epicsTypes.h has a number of definitions for displaying the types and other useful definitions. See the header file for
details.

20.16.7 gsd_sync_defs.h

Not documented.

20.16.8 locationException

A C++ template. Not documented, nor particularly useful with the C++ standard exception hierarchy. This should be in
cxxTemplates or replaced with epicsExcept.h.

20.16.9 shareLib.h

This is the header file for the "decorated names" that appear in header files, e.g.

epicsShareFunc int epicsShareAPI a_func (int arg)

This is used for creating DLLs for windows. Hopefully a way can be found to generated win32 DLLs which does not
require decorated names.

20.16.10 truncateFile.h
enum TF_RETURN {TF_OK=0, TF_ERROR=1};
TF_RETURN truncateFile (const char *pFileName, unsigned size);

where

pFileName - name (and optionally path) of file

truncateFile() truncates the file to the specified size. truncate() is not used because it is not portable. It returns TF_OK if
the file is less than size bytes or if it was successfully truncated. It returns TF_ERROR if the file could not be truncated.

20.16.11 unixFileName.h

Defines macros OSI_PATH_LIST_SEPARATOR and OSI_PATH_SEPARATOR
236 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries

21.1 Overview
Most code in base is operating system independent, i.e. the code is exactly the same for all supported operating systems.
This is accomplished by providing epics defined libraries for facilities that are different on the various systems. The code
is called Operating System Independent or OSI. OSI libraries have multiple implementations.

21.1.1 OSI source directory

Directory <base>/src/libCom/osi contains the code for the operating system independent libraries. The structure
of this directory is:

osi/
 epics*.h
 *.cpp - A few generic c++ implementations
 os/
 Linux/
 RTEMS/
 WIN32/
 cygwin32/
 default/
 posix/
 solaris/
 vxWorks/
NOTE: Other systems are also present but are not currently supported.

21.1.2 Rules for building OSI.

The osi directory contains header files that start with epics. These contain the definitions used by user code. Each of the
directories under osi/<arch> contain architecture dependent code. The file names begin with osd. In most cases
both a header and source file are present.

Installing header files residing under src/libCom/osi into <base>/include

• Files in osi are installed into <base>/include

• Files in osi/os/<*> are installed into <base>/include/os/<arch>.The search order for locating a file
is:

• libCom/osi/os/<arch>

• libCom/osi/os/posix

• libCom/osi/os/default

The search order for locating osd source files is:

• libCom/osi/os/<arch>
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 237

Chapter 21: libCom OSI libraries
epicsAssert
• libCom/osi/os/posix

• libCom/osi/os/default

21.1.3 Locating OSI header files.

When code is compiled the search order for locating header files in base/include is:

• <base>/include/os/<arch>

• <base>/include

21.2 epicsAssert
This is a replacement for ANSI C’s assert. To use this version just include:

include "epicsAssert.h"

instead of

include <assert.h>

If an assert fails, it calls errlog indicating the program’s author, file name, and line number. Under each OS there are
specialized instructions assisting the user to diagnose the problem and generate a good bug report. For instance, under
vxWorks, there are instructions on how to generate a stack trace, and on posix there are instructions about saving the core
file. After printing the message the calling thread is suspended.

21.3 epicsEvent
epicsEvent.h contains a C++ and a C description for an event semaphore.

21.3.1 C++ Interface
typedef enum {
 epicsEventWaitOK,epicsEventWaitTimeout,epicsEventWaitError
}epicsEventWaitStatus;

typedef enum {epicsEventEmpty,epicsEventFull} epicsEventInitialState;

class epicsEvent{
public:
 epicsEvent(epicsEventInitialState initial=epicsEventEmpty);
 ~epicsEvent();
 void signal();
 void wait();
 bool wait(double timeOut); /* false if empty at time out */
 bool tryWait(); /* false if empty */
 void show(unsigned level) const;

 class invalidSemaphore {}; /* exception */
238 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsEvent
 class noMemory {}; /* exception */
private:
 epicsEventId id;
};

The primary use of an event semaphore is for synchronization. An example of using an event semaphore is a consumer
thread that processes requests from one or more producer threads. For example:

• When creating the consumer thread also create an epicsEvent.
 epicsEvent *pevent = new epicsEvent;

• The consumer thread has code containing:
 while(1) {
 pevent->wait();
 while(/*more work*/) {
 /*process work*/
 }
 }

• Producers create requests and issue the statement:
 pevent->signal();

21.3.2 C Interface
typedef void *epicsEventId;

epicsEventId epicsEventCreate(epicsEventInitialState initialState);
epicsEventId epicsEventMustCreate (epicsEventInitialState initialState);
void epicsEventDestroy(epicsEventId id);
void epicsEventSignal(epicsEventId id);

Method Meaning

epicsEvent An epicsEvent can be created empty or full. If it is created empty then a wait issued
before a signal will block. If created full then the first wait will always succeed.
Multiple signals may be issued between waits but have the same effect as a single
signal.

~epicsEvent Remove the event and any resources it uses. Any further use of the semaphore result in
unknown (most certainly bad) behavior. No outstanding take can be active when this
call is made.

signal Signal the event i.e. ensures that the next or current call to wait completes.

wait() Wait for the event.

wait(double
timeOut)

Similar to wait except that if event does not happen the call completes after the
specified time out. The return value is (false,true) if the event (did not, did) happen.

tryWait() Similar to wait except that if event does not happen the call completes immediately.
The return value is (false,true) if the event (did not, did) happen.

show Display information about the semaphore. The information displayed is architecture
dependent.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 239

Chapter 21: libCom OSI libraries
epicsFindSymbol
epicsEventWaitStatus epicsEventWait(epicsEventId id);
void epicsEventMustWait(epicsEventId id);
epicsEventWaitStatus epicsEventWaitWithTimeout(epicsEventId id, double timeOut);
epicsEventWaitStatus epicsEventTryWait(epicsEventId id);
void epicsEventShow(epicsEventId id, unsigned int level);

Each C routine corresponds to one of the C++ methods. epicsEventMustCreate and epicsEventMustWait do
not return if they fail.

21.4 epicsFindSymbol
epicsFindSymbol.h contains the following definition:

void * epicsFindSymbol(const char *name);

vxWorks provides a function symFindByName, which finds and returns the address of global variables. The registry,
described in the next chapter, provides an alternative but also requires extra work by iocCore and/or user code. If the
registry is asked for a name that has not been registered, it calls epicsFindSymbol. If epicsFindSymbol can locate the
global symbol it returns the address, otherwise it returns null.

On vxWorks epicsFindSymbol calls symFindByName.

A default version just returns null, i.e. it always fails.

21.5 epicsInterrupt
epicsInterrupt.h contains the following:

21.5.1 C Interface
int epicsInterruptLock();
void epicsInterruptUnlock(int key);
int epicsInterruptIsInterruptContext();

Method Meaning

epicsFindSymbol Return the address of the variable name
240 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsMutex
void epicsInterruptContextMessage(const char *message);

21.5.2 Implementation notes

A vxWorks specific version is provided. It maps directly to intLib calls.

An RTEMS version is provided that maps to rtems_ calls.

A default version is provided that uses a global semaphore to lock. This version is intended for operating systems in which
iocCore will run as a multi threaded process. The global semaphore is thus only global within the process. This version is
intended for use on all except real time operating systems.

The vxWorks implementation will most likely not work on symmetric multiprocessing systems.

The reason epicsInterrupt is needed is:

• callbackRequest and scanOnce can be issued from interrupt level.

• The errlog routines can be called while at interrupt level.

21.6 epicsMutex
epicsMutex.h contains both C++ and C descriptions for a mutual exclusion semaphore.

21.6.1 C++ Interface
typedef enum {
 epicsMutexLockOK,epicsMutexLockTimeout,epicsMutexLockError
} epicsMutexLockStatus;
class epicsMutex {
public:
 epicsMutex ();
 ~epicsMutex ();

Method Meaning

epicsInterruptLock Lock interrupts and return a key to be passed to
epicsInterruptUnlock
To lock the following is done.
 int key;
 ...
 key = epicsInterruptLock();
 ...
 epicsInterruptUnlock(key);

epicsInterruptUnlock Unlock interrupts.

epicsInterruptIsInterruptCon
text

Return (true, false) if current context is interrupt context.

epicsInterruptContextMessa
ge

Generate a message while interrupt context is true.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 241

Chapter 21: libCom OSI libraries
epicsMutex
 void lock (); /* blocks until success */
 bool lock (double timeOut); /* true if successful */
 bool tryLock (); /* true if successful */
 void unlock ();
 void show (unsigned level) const;

 class invalidSemaphore {}; /* exception */
 class noMemory {}; /* exception */
private:
};
// Automatically applies and releases the mutex.
// This is for use in situations where C++ exceptions are possible.
class epicsAutoMutex {
public:
 epicsAutoMutex (epicsMutex &);
 ~epicsAutoMutex ();
private:
};
// Automatically releases and reapplies the mutex.
// This is for use in situations where C++ exceptions are possible.
class epicsAutoMutexRelease {
public:
 epicsAutoMutexRelease (epicsMutex &);
 ~epicsAutoMutexRelease ();
private:
 epicsAutoMutexRelease (const epicsAutoMutex &);
 epicsAutoMutexRelease & operator = (const epicsAutoMutex &);
 epicsMutex & rMutex;
};

Method Meaning

epicsMutex Create a mutual exclusion semaphore.

~epicsMutex Remove the semaphore and any resources it uses. Any further use of the semaphore
result in unknown (most certainly bad) results.

lock() Wait until the resource is free. After a successful lock additional, i.e. recursive, locks of
any type can be issued but each must have an associated unlock.

lock(double timeOut) Similar to lock except that, if the resource is owned by another thread, the call
completes after the specified time out. The return value is (false,true) if the resource (is
not, is) owned by the caller.

tryLock() Similar to lock except that, if the resource is owned by another thread, the call
completes immediately. The return value is (false,true) if the resource (is not, is) owned
by the caller.

unlock Release the resource. If a thread issues recursive locks, there must be an unlock for
each lock

semMutexShow Display information about the semaphore. The results are architecture dependent.
242 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsMutex
Mutual exclusion semaphores are for situations requiring mutually exclusive access to resources. A mutual exclusion
semaphore may be taken recursively, i.e. can be taken more than once by the owner thread before releasing it. Recursive
takes are useful for a set of routines that call each other while working on a mutually exclusive resource.

The typical use of a mutual exclusion semaphore is:

 epicsMutex *plock = new epicsMutex;
 ...
 ...
 plock->lock();
 /* process resource */
 plock->unlock();

21.6.2 C Interface
typedef void *epicsMutexId;

epicsMutexId epicsMutexCreate(void);
epicsMutexId epicsMutexMustCreate (void);
void epicsMutexDestroy(epicsMutexId id);
void epicsMutexUnlock(epicsMutexId id);
epicsMutexLockStatus epicsMutexLock(epicsMutexId id);
epicsMutexLockStatus epicsMutexMustLock(epicsMutexId id);
epicsMutexLockStatus epicsMutexLockWithTimeout(epicsMutexId id, double timeOut);
epicsMutexLockStatus epicsMutexTryLock(epicsMutexId id);
void epicsMutexShow(epicsMutexId id,unsigned int level);

epicsAutoMutex Automatically applies and releases the mutex. This is useful for situations where
exceptions are possible: For example
epicsMutex lock;
...
{
 epicsAutoMutex safeLock(lock);
...
}

When safeLock is constructed it locks lock. When either an exception occurs or when
the block exits the destructor for safeLock automatically unlocks lock.

epicsAutoMutexRele
ase

Automatically releases and then reapplys the mutex. This is useful for situations where
exceptions are possible: For example
epicsMutex lock;
...
{
 epicsAutoMutexRelease safeUnlock(lock);
...
}

When safeUnlock is constructed it releases lock. When either an exception occurs or
when the block exits the destructor for safeUnlock automatically locks lock.

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 243

Chapter 21: libCom OSI libraries
epicsThread
Each C routine corresponds to one of the C++ methods. epicsMutexMustCreate and epicsMutexMustLock do
not return if they fail.

21.6.3 Implementation Notes

The implementation:

• Must implement recursive locking

• May implement priority inheritance and be deletion safe

A posix version is implemented via pthreads.

21.7 epicsThread
epicsThread.h comtains C++ and C descriptions for a thread.

21.7.1 C Interface
typedef void (*EPICSTHREADFUNC)(void *parm);

static const unsigned epicsThreadPriorityMax = 99;
static const unsigned epicsThreadPriorityMin = 0;
/* some generic values */
static const unsigned epicsThreadPriorityLow = 10;
static const unsigned epicsThreadPriorityMedium = 50;
static const unsigned epicsThreadPriorityHigh = 90;
/* some iocCore specific values */
static const unsigned epicsThreadPriorityChannelAccessServer = 30;
static const unsigned epicsThreadPriorityScanLow = 60;
static const unsigned epicsThreadPriorityScanHigh = 70;

/* stack sizes for each stackSizeClass are implementation and CPU dependent */
typedef enum {
 epicsThreadStackSmall, epicsThreadStackMedium, epicsThreadStackBig
} epicsThreadStackSizeClass;

typedef enum {
 epicsThreadBooleanStatusFail, epicsThreadBooleanStatusSuccess
} epicsThreadBooleanStatus;

unsigned int epicsThreadGetStackSize(epicsThreadStackSizeClass size);

typedef int epicsThreadOnceId;
#define EPICS_THREAD_ONCE_INIT 0

void epicsThreadOnce(epicsThreadOnceId *id, EPICSTHREADFUNC, void *arg);

void epicsThreadExitMain(void);

/* (epicsThreadId)0 is guaranteed to be an invalid thread id */
244 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsThread
typedef void *epicsThreadId;

epicsThreadId epicsThreadCreate(const char *name,
 unsigned int priority, unsigned int stackSize,
 EPICSTHREADFUNC funptr,void *parm);
void epicsThreadSuspendSelf(void);
void epicsThreadResume(epicsThreadId id);
unsigned int epicsThreadGetPriority(epicsThreadId id);
unsigned int epicsThreadGetPrioritySelf();
void epicsThreadSetPriority(epicsThreadId id,unsigned int priority);
epicsThreadBooleanStatus epicsThreadHighestPriorityLevelBelow (
 unsigned int priority, unsigned *pPriorityJustBelow);
epicsThreadBooleanStatus epicsThreadLowestPriorityLevelAbove (
 unsigned int priority, unsigned *pPriorityJustAbove);
int epicsThreadIsEqual(epicsThreadId id1, epicsThreadId id2);
int epicsThreadIsSuspended(epicsThreadId id);
void epicsThreadSleep(double seconds);
epicsThreadId epicsThreadGetIdSelf(void);
epicsThreadId epicsThreadGetId(const char *name);

const char * epicsThreadGetNameSelf(void);
void epicsThreadGetName(epicsThreadId id, char *name, size_t size);

void epicsThreadShowAll(unsigned int level);
void epicsThreadShow(epicsThreadId id,unsigned int level);

typedef void * epicsThreadPrivateId;
epicsThreadPrivateId epicsThreadPrivateCreate(void);
void epicsThreadPrivateDelete(epicsThreadPrivateId id);
void epicsThreadPrivateSet(epicsThreadPrivateId,void *);
void * epicsThreadPrivateGet(epicsThreadPrivateId);

Method Meaning

epicsThreadGetStackSize Get a stack size value that can be given to epicsThreadCreate. Three sizes can be
requested: small, medium, and large.

epicsThreadOnce This is used as follows:
 void myInitFunc(void * arg)
 {
 ...
 }
 ...
 epicsThreadOnceId onceFlag = OSITHREAD_ONCE_INIT;
 ...
 epicsThreadOnce(&onceFlag,myInitFunc,(void *)myParm)
For each unique epicsThreadOnceId, epicsThreadOnce guarantees
 1) myInitFunc is called only once.
 2) myInitFunc completes before any epicsThreadOnce call completes.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 245

Chapter 21: libCom OSI libraries
epicsThread

his

ed

d

so
no
epicsThreadExitMain If the main routine is done but wants to let other threads run it can call this routine. T
should be the last call in main, except the final return. On most systems
epicsThreadExitMain never returns. This must only be called by the main thread.

epicsThreadCreate Create a new thread. The use made of the name, priority, and stacksize arguments is
implementation dependent. Some implementation may ignore one or more of these.
The funptr argument specifies a function that implements the thread and parm is the
single argument passed to funptr. A thread terminates when funptr returns.

epicsThreadSuspendSelf This causes the calling thread to suspend. The only way it can resume is for another
thread to call epicsThreadResume.

epicsThreadResume Resume a suspended thread. Only do this if you know that it is safe to resume a
suspended thread.

epicsThreadGetPriority Get the priority of the specified thread.

epicsThreadGetPrioritySelf Get the priority of this thread.

epicsThreadSetPriority Set a new priority for the specified thread. The result is implementation dependent.

epicsThreadHighestPriorityLevelB
elow

Get a priority that is just lower than the specified priority.

epicsThreadLowestPriorityLevelA
bove

Get a priority that is just above the specified priority.

epicsThreadIsEqual Compares two threadIds and returns (0,1) if they (are not, are) the same.

epicsThreadIsSuspended BAD NAME. taskwd needs this call. It really means: Is there something wrong with
this thread? This could mean suspended or no longer exists or etc. It is a problem
because it is implementation dependent.

epicsThreadSleep Sleep for the specified period of time, i.e. sleep without using the cpu. If delay is >0
then the thread will sleep at least until the next clock tick. The exact time is determin
by the underlying architecture. If delay is <= 0 then a delay of 0 is requested of the
underlying architecture. What happens is architecture dependent but often it allows
other threads of the same priority to run.

epicsThreadGetIdSelf Get the threadId of the calling thread.

epicsThreadGetId Get the threadId if the specified thread. A return of 0 means that no thread was foun
with the specified name.

epicsThreadGetNameSelf Get the name of the calling thread.

epicsThreadGetName Get the name of the specified thread. The value is copied to a caller specified buffer
that if the thread terminates the caller is not left with a pointer to something that may
longer exist.

epicsThreadShowAll Display info about all threads.

epicsThreadShow Display info about the specified thread.

Method Meaning
246 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsThread

y
a
ad
an
epicsThread is meant as a somewhat minimal interface for multithreaded applications. It can be implemented on a wide
variety of systems with the restriction that the system MUST support a multithreaded environment. A POSIX pthreads
version is provided.

The interface provides the following thread facilities, with restrictions as noted:

• Life cycle - A thread starts life as a result of a call to epicsThreadCreate. It terminates when the thread function
returns. It should not return until it has released all resources it uses. If a thread is expected to terminate as a natural
part of it’s life cycle then the thread function must return.

• epicsThreadOnce - This provides the ability to have an initialization function that is guaranteed to be called exactly
once.

• main - If a main routine finishes it’s work but wants to leave other threads running it can call epicsThreadExitMain,
which should be the last statement in main.

• Priorities - Ranges between 0 and 99 with a higher number meaning higher priority. A number of constants are
defined for iocCore specific threads. The underlying implementation may collapse the range 0 to 99 into a smaller
range; even a single priority. User code should never use priorities to guarantee correct behavior.

• Stack Size - epicsThreadCreate accepts a stack size parameter. Three generic sizes are available: small, medium,
and large. Portable code should always use one of the generic sizes. Some implementation may ignore the stack
size request and use a system default instead. Virtual memory systems providing generous stack sizes can be
expected to use the system default.

• epicsThreadId - This is given a value as a result of a call to epicsThreadCreate. A value of 0 always means no
thread. If a threadId is used for a thread that has terminated the result is not defined (but will normally lead to bad
things happening). Thus code that looks after other threads MUST be aware of threads terminating.

21.7.2 C++ Interface
class epicsShareClass epicsThreadRunable {
public:
 virtual void run() = 0;
 virtual void stop();
 virtual void show(unsigned int level) const;
};

class epicsShareClass epicsThread {
public:
 epicsThread (epicsThreadRunable &,const char *name, unsigned int stackSize,

epicsThreadPrivateCreate Thread private variables are intended for use by legacy libraries written for a single
threaded environment and which uses a global variable to store private data. The onl
code in base that currently needs this facility is channel access. A library that needs
private variable should make exactly one call to epicsThreadPrivateCreate. Each thre
should call epicsThreadPrivateSet when the thread is created. Each library routine c
call epicsThreadPrivateGet each time it is called.

epicsThreadPrivateDelete Delete a thread private variable.

epicsThreadPrivateSet Set the value for a thread private variable.

epicsThreadPrivateGet Get the value of a thread private variable, the value is the value set by the call to
epicsThreadPrivateSet that was made by the same thread. If called before
epicsThreadPrivateSet it returns 0.

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 247

Chapter 21: libCom OSI libraries
epicsThread
 unsigned int priority=epicsThreadPriorityLow);
 virtual ~epicsThread ();
 void start();
 void resume ();
 void getName (char *name, size_t size) const;
 unsigned int getPriority () const;
 void setPriority (unsigned int);
 bool priorityIsEqual (const epicsThread &otherThread) const;
 bool isSuspended () const;
 bool isCurrentThread () const;
 bool operator == (const epicsThread &rhs) const;
 /* these operate on the current thread */
 static void suspendSelf ();
 static void sleep (double seconds);
 static epicsThread & getSelf ();
 static const char * getNameSelf ();
private:
 epicsThreadRunable &runable;
 epicsThreadId id;
 epicsEvent exit;
 epicsEvent begin;
 bool cancel;

 epicsThread (const epicsThread &);
 epicsThread & operator = (const epicsThread &);

 friend void epicsThreadCallEntryPoint (void *pPvt);
};

template <class T>
class epicsThreadPrivate {
public:
 epicsThreadPrivate ();
 ~epicsThreadPrivate ();
 T *get () const;
 void set (T *);
 class unableToCreateThreadPrivate {}; // exception
private:
 epicsThreadPrivateId id;
};

The C++ interface is just a wrapper around the C interface. Two differences are the method start and the class
epicsThreadRunable.

The method start must be called only after the epicsThead object is constructed. It in turn calls the run method of
the epicsThreadRunable object.

Code using the C++ interface code must provide a class that derives from epicsThreadRunable. One way to
accomplish this is as follows:

class myThread: public epicsThreadRunable {
public:
 myThread(int arg,const char *name);
 virtual ~myThread();
 virtual void run();
248 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsTime
 epicsThread thread;
 ...
}

myThread::myThread(int arg,const char *name) :
 thread(*this,name,epicsThreadGetStackSize(epicsThreadStackSmall),50)
{
 thread.start();
}

myThread::~myThread() {}

void myThread::run()
{
 ...
}

21.8 epicsTime
epicsTime.h contains C++ and C descriptions for time.

21.8.1 Time Related Structures
/* epics time stamp for C interface*/
typedef struct epicsTimeStamp {
 epicsUInt32 secPastEpoch; /* seconds since 0000 Jan 1, 1990 */
 epicsUInt32 nsec; /* nanoseconds within second */
} epicsTimeStamp;

/*TS_STAMP is deprecated */
#define TS_STAMP epicsTimeStamp

struct timespec; /* POSIX real time */
struct timeval; /* BSD */

/* Network Time Protocal Timestamp */
struct ntpTimeStamp {
 epicsUInt32 l_ui; /* sec past NTP epoch */
 epicsUInt32 l_uf; /* fractional seconds */
};
// The next two structures are used only by C++ interface
// extended ANSI C RTL "struct tm" which includes nano seconds within a second.
struct tm_nano_sec {
 struct tm ansi_tm; /* ANSI C time details */
 unsigned long nSec; /* nano seconds extension */
};
struct time_t_wrapper {
 time_t ts;
};
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 249

Chapter 21: libCom OSI libraries
epicsTime
The above structures are for the various time formats.

• epicsTimeStamp - This is the structure used by the C interface for epics time stamps. The C++ interface stores
this information in private members. The two elements of the class are:

• secPastEpoch - The number of seconds since January 1, 1990 (the epics epoch).

• nsec - nanoseconds within a second
NOTE: TS_STAMP is defined for compatibility with existing code.

• timespec - This is defined by POSIX Real Time. It requires two mandatory fields:

• time_t tv_sec - Number of seconds since 1970 (The POSIX epoch)

• long tv_nsec - nanoseconds within a second

• timeval - BSD and SRV5 Unix timestamp. It has two fields:

• time_t tv_sec - Number of seconds since 1970 (The POSIX epoch)

• time_t tv_nsec - nanoseconds within a second

• ntpTimeStamp - Network Time Protocol timestamp. The fields are:

• l_ui - Number of seconds since 1900 (The NTP epoch)

• l_uf - Fraction of a second. For example 0x800000000 represents 1/2 second.

• tm - Defined by standard C library

• tm_nano_sec - Defined by epics. It just adds a nanosecond field to struct tm.

• time_t_wrapper - This is for converting to/from the ANSI C time_t. Since time_t is usually an
elementary type providing a conversion operator from time_t to/from epicsTime could cause undesirable
implicit conversions. Providing a conversion operator to/from a time_t_wrapper prevents implicit
conversions.

NOTE on conversion. The epics implementation will properly convert between the various formats from the beginning of
the EPICS epoch until at least 2038. Unless the underlying architecture support has defective POSIX, BSD/SRV5, or
standard C time support the epics implementation should be valid until 2106.

21.8.2 C++ Interface
class epicsTime;

class epicsTimeEvent
{
 friend class epicsTime;
public:
 epicsTimeEvent (const int &eventName);
private:
 unsigned eventNumber;
};

class epicsTime
{
public:
 // exceptions
 class unableToFetchCurrentTime {};
 class formatProblemWithStructTM {};

 epicsTime ();
 epicsTime (const epicsTime &t);

 static epicsTime getEvent (const epicsTimeEvent &event);
250 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsTime
 static epicsTime getCurrent ();

 // convert to and from EPICS epicsTimeStamp format
 operator epicsTimeStamp () const;
 epicsTime (const epicsTimeStamp &ts);
 epicsTime operator = (const epicsTimeStamp &rhs);

 // convert to and from ANSI time_t
 operator time_t_wrapper () const;
 epicsTime (const time_t_wrapper &tv);
 epicsTime operator = (const time_t_wrapper &rhs);

 // convert to and from ANSI C’s "struct tm" (with nano seconds)
 operator tm_nano_sec () const;
 epicsTime (const tm_nano_sec &ts);
 epicsTime operator = (const tm_nano_sec &rhs);

 // convert to and from POSIX RT’s "struct timespec"
 operator struct timespec () const;
 epicsTime (const struct timespec &ts);
 epicsTime operator = (const struct timespec &rhs);

 // convert to and from BSD’s "struct timeval"
 operator struct timeval () const;
 epicsTime (const struct timeval &ts);
 epicsTime operator = (const struct timeval &rhs);

 // convert to and from NTP timestamp format
 operator ntpTimeStamp () const;
 epicsTime (const ntpTimeStamp &ts);
 epicsTime operator = (const ntpTimeStamp &rhs);

 // convert to and from GDD’s aitTimeStamp format
 operator aitTimeStamp () const;
 epicsTime (const aitTimeStamp &ts);
 epicsTime operator = (const aitTimeStamp &rhs);

 // arithmetic operators
 double operator- (const epicsTime &rhs) const; // returns seconds
 epicsTime operator+ (const double &rhs) const; // add rhs seconds
 epicsTime operator- (const double &rhs) const; // subtract rhs seconds
 epicsTime operator+= (const double &rhs); // add rhs seconds
 epicsTime operator-= (const double &rhs); // subtract rhs seconds

 // comparison operators
 bool operator == (const epicsTime &rhs) const;
 bool operator != (const epicsTime &rhs) const;
 bool operator <= (const epicsTime &rhs) const;
 bool operator < (const epicsTime &rhs) const;
 bool operator >= (const epicsTime &rhs) const;
 bool operator > (const epicsTime &rhs) const;

 // convert current state to user-specified string
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 251

Chapter 21: libCom OSI libraries
epicsTime
 size_t strftime (char *pBuff, size_t bufLength, const char *pFormat) const;

 // dump current state to standard out
 void show (unsigned interestLevel) const;

 // useful public constants
 static const unsigned secPerMin;
 static const unsigned mSecPerSec;
 static const unsigned uSecPerSec;
 static const unsigned nSecPerSec;
 static const unsigned nSecPerUSec;

 // depricated
 static void synchronize ();
private:
 unsigned long secPastEpoch;// seconds since 1990
 unsigned long nSec;// nanoseconds within second
};

21.8.3 class epicsTimeEvent

21.8.4 class epicsTime

Method Meaning

epicsTimeEvent This is the only method provided for this
class.
IT IS NOT DEFINED. Why is it needed?

Method Meaning

epicsTime()
epicsTime(const epicsTime&
t);

The default constructor sets the time to the beginning of the epics epoch.

getEvent Returns the time for the associated event. See the description of the C routine
epicsTimeGetEvent described below for details.

getCurrent Gets the current time. An example is:
 epicsTime time = epicsTime::getCurrent();
252 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsTime
convert to/from
epicsTimeStamp

Three methods are provided for epicsTimeStamp. A copy constructor, an assignment
operator, and a conversion to epicsTimeStamp. Assume the following definitions:
 epicsTime time;
 epicsTimeStamp ts;

An example of the copy constructor is:

 epicsTime time1(ts);

An example of the assignment operator is:

 time = ts;

An example of the epicsTimeStamp operator is:

 ts = time;

Convert to/from
ANSI time_t

Three methods are provided for ANSI time_t. A copy constructor, an assignment
operator, and a conversion to time_t_wrapper. The structure time_t_wrapper must be
used instead of time_t because undesired conversions could occur: Assume the
following definitions:
 time_t tt;
 time_t_wrapper ttw;
 epicsTime time;

An example of the copy constructor is:

 ttw.tt = tt;
 epicsTime time1(ttw);

An example of the assignment operator is:

 time = ttw;

An example of the time_t_wrapper operator is:

 ttw = time;
 tt = ttw.tt;

convert to and from
tm_nano_sec

Three methods are provided for tm_nano_sec A copy constructor, an assignment
operator, and a conversion to tm_nano_sec. Assume the following definitions:
 tm_nano_sec ttn;
 epicsTime time;

An example of the copy constructor is:
 epicsTime time1(ttn);

An example of the assignment operator is:

 time = ttn;

An example of the tm_nano_sec operator is:

 ttn = time;

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 253

Chapter 21: libCom OSI libraries
epicsTime
convert to and from
POSIX RT’s "struct
timespec"

Three methods are provided for struct timespec. A copy constructor, an assignment
operator, and a conversion to struct timespec. Assume the following definitions:
 struct timespec tts;
 epicsTime time;

An example of the copy constructor is:
 epicsTime time1(tts);

An example of the assignment operator is:

 time = tts;

An example of the struct timespec operator is:

 tts = time;

convert to and from
 BSD’s "struct timeval"

Three methods are provided for struct timeval. A copy constructor, an assignment
operator, and a conversion to struct timeval. Assume the following definitions:
 struct timeval ttv;
 epicsTime time;

An example of the copy constructor is:
 epicsTime time1(ttv);

An example of the assignment operator is:

 time = ttv;

An example of the struct timeval operator is:

 ttv = time;

convert to and from NTP
timestamp format

Three methods are provided for ntpTimeStamp. A copy constructor, an assignment
operator, and a conversion to ntpTimeStamp. Assume the following definitions:
 ntpTimeStamp ntp;
 epicsTime time;

An example of the copy constructor is:
 epicsTime time1(ntp);

An example of the assignment operator is:

 time = ntp;

An example of the ntpTimeStamp operator is:

 ntp = time;

Method Meaning
254 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
epicsTime
21.8.5 C Interface
/* All epicsTime routines return (-1,0) for (failure,success) */
#define epicsTimeOK 0
#define epicsTimeERROR (-1)

#define epicsTimeEventCurrentTime 0

/* convert to and from ANSI C’s "time_t" */
int epicsTimeGetCurrent (epicsTimeStamp *pDest);
int epicsTimeGetEvent (epicsTimeStamp *pDest, unsigned eventNumber);

/* convert to and from ANSI C’s "struct tm" with nano second */
int epicsTimeToTime_t (time_t *pDest, const epicsTimeStamp *pSrc);
int epicsTimeFromTime_t (epicsTimeStamp *pDest, time_t src);

/*convert to and from ANSI C’s "struct tm" with nano seconds */
int epicsTimeToTM (
 struct tm *pDest, unsigned long *pNSecDest, const epicsTimeStamp *pSrc);

arithmetic operators
-
+
+=
-=

The arithmetic operators allow the difference of two epicsTimes, with the result in
seconds. It also allows -, +, +=, and -= where the left hand argument is an epicsTime
and the right hand argument is a double. Examples are:
 epicsTime time, time1, time2;
 double t1,t2,t3;
 ...
 t1 = time2 - time1;
 time = time1 + 4.5;
 time = time2 - t3;
 time2 += 6.0;

Comparison operators
==, |=, <=, <, >=, >

Two epics times can be compared:
 epicsTime time1, time2;
 ...
 if(time1<=time2) { ...

strftime This is a facility similar to the ANSI C library routine strftime. See K&R for details
about strftime. The epicsTime method also provides support for the printing the
nanoseconds portion of the time. It looks at the end of the format string for something
on the form "%0<n>f". It uses this format to display the nanoseconds converted to the
correct precision. For example:
 epicsTime time = epicsTime::getCurrent();
 char buf[20];
 time.strftime(buf,20,"%Y/%m/%d %H:%M:%S.%06f");
 printf("%s\n",buf);

Will print the time in the format:

 2001/01/26 20:50:29.813505

show Shows the date/time.

Method Meaning
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 255

Chapter 21: libCom OSI libraries
osiPoolStatus
int epicsTimeFromTM (
 epicsTimeStamp *pDest, const struct tm *pSrc, unsigned long nSecSrc);

/* convert to and from POSIX RT’s "struct timespec" */
int epicsTimeToTimespec (struct timespec *pDest, const epicsTimeStamp *pSrc);
int epicsTimeFromTimespec (epicsTimeStamp *pDest, const struct timespec *pSrc);

/* convert to and from BSD’s "struct timeval" */
int epicsTimeToTimeval (struct timeval *pDest, const epicsTimeStamp *pSrc);
int epicsTimeFromTimeval (epicsTimeStamp *pDest, const struct timeval *pSrc);
/*arithmetic operations */
double epicsTimeDiffInSeconds (
 const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight);
void epicsTimeAddSeconds (
 epicsTimeStamp *pDest, double secondsToAdd); /* adds seconds to *pDest */

/*comparison operations: returns (0,1) if (false,true) */
int epicsTimeEqual(const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight);
int epicsTimeNotEqual(const epicsTimeStamp *pLeft,const epicsTimeStamp *pRight);
int epicsTimeLessThan(const epicsTimeStamp *pLeft,const epicsTimeStamp *pRight);
int epicsTimeLessThanEqual(
 const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight);
int epicsTimeGreaterThan (
 const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight);
int epicsTimeGreaterThanEqual (
 const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight);
/*convert to ASCII string */
size_t epicsTimeToStrftime (
 char *pBuff, size_t bufLength, const char *pFormat, const epicsTimeStamp
*pTS);

/* dump current state to standard out */
void epicsTimeShow (const epicsTimeStamp *, unsigned interestLevel);

The C interface provides most of the features as the C++ interface. The features of the C++ operators are provided as
functions.

21.9 osiPoolStatus
osiPoolStatus.h contains the following description:

int osiSufficentSpaceInPool(void);

This determines if enough free memory exists to continue.

A vxWorks version returns (true,false) if memFindMax returns (>100000, <=100000) bytes.

Method Meaning

osiSufficentSpaceInPool Return (true,false) if there is sufficient free memory.
256 EPICS IOC Application Developer’s Guide

Chapter 21: libCom OSI libraries
osiProcess
The default version always returns true.

21.10 osiProcess
osiProcess.h contains the following:

typedef enum osiGetUserNameReturn {
 osiGetUserNameFail,
 osiGetUserNameSuccess
}osiGetUserNameReturn;

osiGetUserNameReturn osiGetUserName (char *pBuf, unsigned bufSize);

/*
 * Spawn detached process with named executable, but return
 * osiSpawnDetachedProcessNoSupport if the local OS does not
 * support heavy weight processes.
 */
typedef enum osiSpawnDetachedProcessReturn {
 osiSpawnDetachedProcessFail,
 osiSpawnDetachedProcessSuccess,
 osiSpawnDetachedProcessNoSupport
}osiSpawnDetachedProcessReturn;

osiSpawnDetachedProcessReturn osiSpawnDetachedProcess(
 const char *pProcessName, const char *pBaseExecutableName);

Not documented.

21.11 osiSigPipeIgnore
osiSigPipeIgnore.h contains the following:

void installSigPipeIgnore (void);

Not documented.

21.12 osiSock.h
See the header file in <base>/src/libCom/osi.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 257

Chapter 21: libCom OSI libraries
osiSock.h
258 EPICS IOC Application Developer’s Guide

Chapter 22: Registry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support. Since on
some systems this always returns failure, a registry facility is provided to implement the binding. The basic idea is that
any storage meant to be "globally" accessable must be registered before it can be accessed by other code.

A perl script is provided that reads the xxxApp.dbd file and produces a c file containing a routine
registerRecordDeviceDriver, which registers all record/device/driver support defined in the xxxApp.dbd file.

22.1 Registry.h
int registryAdd(void *registryID,const char *name,void *data);
void *registryFind(void *registryID,const char *name);
int registrySetTableSize(int size);
void registryFree();
int registryDump(void);

This is the code which does the work. Each different set of things to register must have it’s own unique ID. Everything to
be registered is stored in the same gpHash table.

Routine registrySetTableSize is provided in case the default hash table size (1024 entries) is not sufficient.

22.2 registryRecordType.h
typedef int (*computeSizeOffset)(dbRecordType *pdbRecordType);

typedef struct recordTypeLocation {
struct rset *prset;
computeSizeOffset sizeOffset;
}recordTypeLocation;

int registryRecordTypeAdd(const char *name,recordTypeLocation *prtl);
recordTypeLocation *registryRecordTypeFind(const char *name);

Some features:

• Access to both the record support entry table and to the routine which computes the size and offset of each field are
provided

• Type safe access is provided.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 259

Chapter 22: Registry
registryDeviceSupport.h
22.3 registryDeviceSupport.h
int registryDeviceSupportAdd(const char *name,struct dset *pdset)
struct dset *registryDeviceSupportFind(const char *name);

This provides access to the device support entry table.

22.4 registryDriverSupport.h
int registryDriverSupportAdd(const char *name,struct drvet *pdrvet);
struct drvet *registryDriverSupportFind(const char *name);

/* The following function is generated by registerRecordDeviceDriver/pl */
int registerRecordDeviceDriver(DBBASE *pdbbase);

This provides access to the driver support table.

22.5 registryFunction.h
typedef void (*REGISTRYFUNCTION)(void);
/* c interface definitions */
int registryFunctionAdd(const char *name,REGISTRYFUNCTION func);
REGISTRYFUNCTION registryFunctionFind(const char *name);

This registers a function. This is used for subroutine like records.

22.6 registerRecordDeviceDriver.c
A version of this is provided for vxWorks. This version makes it unnecessary to use registerRecordDeviceDriver.pl or
register other external names. Thus for vxWorks everything can work almost exactly like it did in release 3.13.x

22.7 registerRecordDeviceDriver.pl
This is the perl script which creates a c source file that registers record/device/driver support. Make rules:

• execute this script using the dbd file created by dbExpand

• compile the resulting C file

• Make the object file part of the xxxLib file
260 EPICS IOC Application Developer’s Guide

Chapter 23: Database Structures

23.1 Overview
This chapter describes the internal structures describing an IOC database. It is of interest to EPICS system developers but
serious application developers may also find it useful. This chapter is intended to make it easier to understand the IOC
source listings. It also gives a list of the header files used by IOC Code.

23.2 Include Files
This section lists the files in base/include that are of most interest to IOC Application Developers:

alarm.h alarmString.h - These files contain definitions for all alarm status and severity values.

cadef.h caerr.h caeventmask.h - These files are of interest to anyone writing channel access clients.

callback.h - The definitions for the General Purpose callback system.

dbAccess.h - Definitions for the runtime database access routines.

dbBase.h - Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchall file for definitions that have no other reasonable place to appear.

dbFldTypes.h - Definitions for DBF_xxx and DBR_xxx types.

dbScan.h - Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h - Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorks lstLib. All routines start with ell instead of
lst. The ellLib routines work on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system

fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose free list facility

gpHash.h - A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used by initHooks.c routines.
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 261

Chapter 23: Database Structures
Include Files
link.h - Link definitions

module_types.h - VME hardware configuration. SHOULD NOT BE USED BY NEW SUPPORT.

recSup.h - The record global routines.

special.h - Definitions for special fields, i.e. SPC_xxx.

task_params.h - Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look at base/src/libCom/tsSubr.c
262 EPICS IOC Application Developer’s Guide

Chapter 23: Database Structures
Structures
23.3 Structures

dbBase
 menuList
 recordTypeList
 drvList
 bptList
 pathPvt
 ppvd
 pgpHash
 ignoreMissingMenus

dbMenu
 node
 name
 nChoice
 papChoiceName
 papChoiceValue

dbRecordType
 node
 attributeList
 recList
 devList
 name
 no_fields
 no_prompt
 link_ind
 papsortFldName
 sortFldInd
 pvalFldDes
 indvalFlddes
 papFldDes
 ...

drvSup
 node
 name
 pdrvet

brkTable
 node
 name
 number
 papBrkInt

brkInt
 raw
 slope
 eng

dbFldDes
 prompt
 name
 extra
 pdbRecordType
 indRecordType
 special
 field_type
 process_passive
 base
 promptgroup
 interest
 as_level
 initial
 ...

devSup
 node
 name
 pdset
 link_type

dbRecordNode
 node
 precord
 recordname
 visible
EPICS Release: R3.14.0beta1
EPICS IOC Application Developer’s Guide 263

Chapter 23: Database Structures
Structures
264 EPICS IOC Application Developer’s Guide

INDEX

A

AB_IO. 75
Access Security. 91
addpath . 64, 66
adjustment.h . 235
adjustToWorstCaseAlignment 235
algorithm. 222
Alloc/Free DBENTRY 159
allocate . 229
ANSI . 46
asAddClient. 100
asAddMember. 100
asChangeClient . 101
asChangeGroup. 100
ascheck . 94
asCheckGet(. 101
asCheckPut . 101
asCompute. 102
asComputeAllAsg . 102
asComputeAsg . 102
asdbdump . 105, 117
asDbGetAsl . 104
asDbGetMemberPvt . 104
asDump(. 102
asDumpHag. 102
asDumpHash . 103
asDumpMem. 103
asDumpRules . 102
asDumpUag. 102
ASG. 93

. 92
asGetClientPvt . 101
asGetMemberPvt. 100
asInit . 95, 104, 117
asInitAsyn . 104
asInitFile . 99
asInitFP . 99
asInitialize . 99
ASL. 92
asl - field definition rules. 67
asl_level - field definition 68
asphag . 105, 117
aspmem . 105, 118
asprules . 105, 118
aspuag . 105, 117
asPutClientPvt. 101

asPutMemberPvt . 100
asPvt in DBADDR . 175
asRegisterClientCallback 101
asRemoveClient . 101
asRemoveMember . 100
asSetFilename 94, 104, 117
asSetSubstitutions 94, 104
asSubInit . 95, 105
asSubProcess. 95, 105
astac. 104
asTrapWriteAfter 106–107
asTrapWriteBefore 106–107
asTrapWriteId . 107
asTrapWriteListener . 107
asTrapWriteMessage. 107
asTrapWriteRegisterListener 106–107
asTrapWriteUnregisterListener. 107
asynchronous device support example 149
aToIPAddr . 234

B

base - field definition. 70
base - field definition rules 68
BBGPIB_IO . 75
Bin install files . 42
BIN_INSTALLS . 43, 50
BITBUS_IO . 75
BPTS. 31–32
breakpoint table - database definition 73
Breakpoint Tables 31–32, 77
Breakpoints . 113
breaktable . 64
bucketLib.h . 219
Build Facility . 25

C

C++ library . 219
ca_channel_status . 118
Cached Puts. 61
CALC . 94
calcPerform. 219
CALLBACK . 197
callbackGetUser . 198
callbackInit . 198
callbackRequest . 198
callbackRequestProcessCallback 198
callbackSetCallback . 198
callbackSetPriority . 198
callbackSetQueueSize. 88, 200
callbackSetUser. 198
callocMustSucceed . 235
CAMAC_IO . 75
cancel . 228
cantProceed . 235
cantProceed.h . 235
casr . 118
CFLAGS . 45
Channel Access. 17
265 EPICS IOC Application Developer’s Guide

channel access link . 53
Channel Access Monitors 187
checkAlarms . 137
choice . 64
choice_string - device definition 72
class templates . 219
CLASSES . 49
clean . 30
CMPLR. 46
comment - Database Definitions. 66
computeSizeOffset . 259
CONFIG . 51
CONFIG.CrossCommon. 50
CONFIG_ADDONS. 50
CONFIG_APP_INCLUDE. 27
CONFIG_BASE . 50
CONFIG_BASE_VERSION 50
CONFIG_COMMON . 51
CONFIG_ENV . 51
CONFIG_SITE . 51
CONFIG_SITE_ENV. 51
Configure. 50
configure/os File . 51
configure/tool File. 51
CONSTANT . 74
constant link . 53
coreRelease . 120
cp.pl. 51
createTimer . 229
CROSS_OP. 46
CROSS_WARN . 46
cvt_dbaddr - Record Support Routine 141
cvtBitsToUlong . 223
cvtCharToString . 223
cvtDoubleToCompactString 223
cvtDoubleToExpString 222
cvtDoubleToString . 222
cvtFast.h . 222
cvtFloatToCompactString 222
cvtFloatToExpString . 222
cvtFloatToString . 222
cvtLongToHexString. 223
cvtLongToOctalString. 223
cvtLongToString . 223
cvtShortToString . 223
cvtUcharToString . 223
cvtUlongToBits . 223
cvtUlongToString . 223
cvtUshortToString. 223

D

database access routines - List of 176
Database Definition. 33
Database Definition File 63
database definitions. 63
Database Files . 34
Database Format - Summary 63
database link . 53
Database Link Guidelines 56
Database Links . 53
Database Locking . 54

Database Scanning . 55
DB. 34
DB_MAX_CHOICES. 173
db_post_events . 187
dba. 112
dbAccess.h . 173
dbAdd . 175
dbAddPath. 160
DBADDR . 175
dbAllocBase . 158
dbAllocEntry. 159
dbAllocForm . 167
dbap. 114
dbAsciiToMenuH . 79
dbAsciiToRecordtypeH. 79
dbb. 113
dbBufferSize . 183
dbc. 114
dbCaAddLink . 189
dbCaGetAlarmLimits 190
dbCaGetAttributes . 190
dbCaGetControlLimits 190
dbCaGetGraphicLimits 190
dbCaGetLink. 189
dbCaGetPrecision . 190
dbCaGetSevr . 190
dbCaGetTimeStamp . 190
dbCaGetUnits . 190
dbCaLinkInit . 87, 189
dbCaPutLink . 189
dbcar . 119, 121
dbCaRemoveLink . 189
dbCopyEntry . 160
dbCopyEntryContents. 160
dbCopyRecord . 164
dbCreateRecord. 164
dbCvtLinkToConstant. 167
dbCvtLinkToPvlink. 167
dbd. 114
dbDefs.h . 173, 235
dbDeleteRecord. 164
DBDEXPAND . 33
DBDINSTALL . 33–34
DBDNAME . 33
dbDumpBreaktable . 169
dbDumpDevice . 123, 169
dbDumpDriver . 123, 169
dbDumpFldDes . 123, 169
dbDumpMenu 122–123, 169
dbDumpPath . 169
dbDumpRecord . 169
dbDumpRecords 124, 170
dbDumpRecordType 123, 169
DBE_ALARM . 140
DBE_LOG . 140
DBE_VAL. 140
dbel . 119
dbExpand . 81, 169
DBF_CHAR . 174
DBF_DEVICE . 174
DBF_DOUBLE. 174
DBF_ENUM. 174
DBF_FLOAT . 174
DBF_FWDLINK 76, 174
266 EPICS IOC Application Developer’s Guide

DBF_INLINK
. 174

DBF_LONG . 174
DBF_MENU. 174
DBF_NOACCESS . 174
DBF_OUTLINK. 174
DBF_SHORT . 174
DBF_UCHAR. 174
DBF_ULONG. 174
DBF_USHORT. 174
DBF_xxx Definitions of Field types 174
dbFindBrkTable . 169
dbFindField . 165
dbFindMenu . 166
dbFindRecord . 164
dbFindRecordType . 161
dbFinishEntry . 159
dbFirstField . 162
dbFirstRecord . 164
dbFirstRecordType . 161
dbFldTypes.h. 173
dbFoundField . 162, 165
dbFreeBase . 159
dbFreeEntry. 159
dbFreeForm. 167
dbGet. 179
dbGetDefaultName . 163
dbGetField. 179
dbGetFieldIndex . 184
dbGetFieldName. 162
dbGetFieldType. 162
dbGetFormPrompt . 167
dbGetFormValue . 167
dbGetLink . 179
dbGetLinkDBFtype. 184
dbGetLinkField . 167
dbGetLinkType . 167
dbGetMenuChoices. 166
dbGetMenuIndex . 166
dbGetMenuIndexFromString 166
dbGetMenuStringFromIndex 166
dbGetNelements . 184
dbGetNFields . 162
dbGetNLinks. 167
dbGetNMenuChoices 166
dbGetNRecords. 164
dbGetNRecordTypes. 161
dbGetPdbAddrFromLink 184
dbGetPrompt . 163
dbGetPromptGroup. 163
dbGetRange. 165
dbGetRecordAttribute. 163
dbGetRecordName . 164
dbGetRecordTypeName 162
dbGetRset . 183
dbGetString . 165
dbgf . 112
dbgrep . 111
dbhcr . 115, 121
dbInitEntry . 159
dbInvisibleRecord . 165
dbior . 115
dbIsDefaultValue. 165
dbIsLinkConnected . 184

dbIsValueField . 183
dbIsVisibleRecord. 165
dbl . 111
dbLoadDatabase . 82
dbLoadRecords . 82
dbLoadTemplate . 83
dbLockGetLockId . 188
dbLockInitRecords . 188
dbLockSetGblLock . 188
dbLockSetGblUnlock 188
dbLockSetMerge. 188
dbLockSetRecordLock 188
dbLockSetSplitSl . 188
dblsr. 121
dbmf.h . 223
dbmfFree . 224
dbmfFreeChunks. 224
dbmfInit. 223
dbmfMalloc. 224
dbmfShow . 224
dbNameToAddr. 178
dbNextField. 162
dbNextRecord . 164
dbNextRecordType . 161
dbNotifyAdd . 183
dbNotifyCancel . 183
dbNotifyCompletion . 183
dbnr . 113
dbp. 114
dbPath . 160
dbpf . 112
dbpr . 112
dbProcess . 186
dbPut . 181
dbPutAttribute. 77, 185
dbPutField . 180
dbPutForm. 167
dbPutLink . 180
dbPutMenuIndex. 166
dbPutNotify. 181–182
dbPutRecordAttribute 163
dbPutString . 165
dbPvdDump . 124, 169
dbPvdTableSize. 88
DBR_AL_DOUBLE. 177
DBR_AL_LONG . 177
DBR_CHAR . 177
DBR_CTRL_DOUBLE 177
DBR_CTRL_LONG. 177
DBR_DOUBLE . 177
DBR_ENUM. 177
DBR_ENUM_STRS. 177
dbr_field_type in DBADDR 175
DBR_FLOAT . 177
DBR_GR_DOUBLE. 177
DBR_GR_LONG . 177
DBR_LONG . 177
DBR_PRECISION . 177
DBR_PUT_ACKS 177–178
DBR_PUT_ACKT 177–178
DBR_SHORT . 177
DBR_STATUS . 177
DBR_TIME. 177
DBR_UCHAR . 177
267 EPICS IOC Application Developer’s Guide

DBR_ULONG . 177
DBR_UNITS. 177
DBR_USHORT. 177
DBR_xxx Database Request Types and Options177
dbReadDatabase . 160
dbReadDatabaseFP . 160
dbReadTest . 84
dbRenameRecord 164–165
dbReportDeviceConfig 169
dbs . 114
dbScan.h . 205
dbScanFwdLink . 186
dbScanLink . 186
dbScanLock. 187
dbScanPassive . 186
dbScanUnlock . 188
dbstat . 114
dbt . 120
dbtgf . 120
dbToMenuH . 78
dbToRecordtypeH . 78
dbtpf . 120
dbtpn . 121
dbtr . 113
dbTranslateEscape 65, 235
dbValueSize. 183
dbVerify. 165
dbVerifyForm . 168
dbVisibleRecord . 165
dbWriteBreaktable . 160
dbWriteBreaktableFP 160
dbWriteDevice . 160
dbWriteDeviceFP . 160
dbWriteDriver . 160
dbWriteDriverFP. 160
dbWriteMenu . 160
dbWriteMenuFP . 160
dbWriteRecord . 161
dbWriteRecordFP . 161
dbWriteRecordType . 160
dbWriteRecordTypeFP 160
DCT_FWDLINK . 158
DCT_INLINK. 158
DCT_INTEGER . 158
DCT_LINK_CONSTANT 167
DCT_LINK_DEVICE 167
DCT_LINK_FORM . 167
DCT_LINK_PV . 167
DCT_MENU. 158
DCT_MENUFORM . 158
DCT_NOACCESS . 158
DCT_OUTLINK. 158
DCT_REAL . 158
DCT_STRING . 158
destroy. 228
devConnectInterrupt . 194
devCreateMask . 195
devDisableInterruptLevel 194
devDisconnectInterrupt. 194
devEnableInterruptLevel. 194
device . 64
device - database definition. 72
Device Support Entry Table 133
devNmlToDig . 195

devNormalizedGblGetField 195
devRegisterAddress . 193
devUnregisterAddress 194
DIR . 47
Directory structure . 25
Doc file . 39
DOCS . 39, 48
doubly-linked list . 220
driver . 64
driver - database definition 73
Driver Support Entry Table Example 154
drvet_name - driver definition. 73
DSET. 133
dset - dbCommon . 147
dset_name - device definition 72
dtyp - dbCommon . 147

E

E2DB_FLAGS . 49
ellAdd . 224
ellConcat . 224
ellCount. 224
ellDelete . 224
ellExtract . 224
ellFind . 225
ellFirst . 224
ellFree . 225
ellGet. 224
ellInit . 224
ellInsert . 224
ellLast . 224
ellLib.h . 224
ELLLIST. 224
ellNext. 224
ELLNODE . 224
ellNStep. 224
ellNth. 224
ellPrevious. 224
ellVerify. 225
eltc. 115, 128
Environment Prerequisites 26
Environment Variables 90
EPICS . 7, 17

Basic Attributes. 17
Hardware/Software Platforms. 18
Overview. 7

EPICS_CA_ADDR_LIST 90
EPICS_CA_AUTO_ADDR_LIST 90
EPICS_CA_BEACON_PERIOD 90
EPICS_CA_CONN_TMO 90
EPICS_CA_REPEATER_PORT 90
EPICS_CA_SERVER_PORT 90
EPICS_HOST_ARCH 26
EPICS_IOC_LOG_FILE_COMMAND. 129
EPICS_IOC_LOG_FILE_LIMIT. 129
EPICS_IOC_LOG_FILE_NAME 129
EPICS_IOC_LOG_INET 90
EPICS_IOC_LOG_PORT. 90, 130
EPICS_THREAD_ONCE_INIT. 244
EPICS_TS_MIN_WEST 90
EPICS_TS_NTP_INET 90
268 EPICS IOC Application Developer’s Guide

epicsAddressType . 193
epicsAddressTypeName 193
epicsAlgorithm.h. 222
epicsAssert . 238
epicsEnvSet . 90
epicsEnvShow. 120
epicsEvent . 238
epicsEvent.h . 238
epicsEventCreate. 239
epicsEventDestroy . 239
epicsEventId . 239
epicsEventMustCreate 239
epicsEventMustWait . 240
epicsEventShow . 240
epicsEventSignal. 239
epicsEventTryWait . 240
epicsEventWait . 240
epicsEventWaitError . 238
epicsEventWaitOK . 238
epicsEventWaitStatus 238
epicsEventWaitTimeout 238
epicsEventWaitWithTimeout 240
epicsExcept.h . 222
epicsFindSymbol . 240
epicsFindSymbol.h . 240
epicsInterrupt . 240
epicsInterrupt.h . 240
epicsInterruptContextMessage 241
epicsInterruptIsInterruptContext. 240
epicsInterruptLock . 240
epicsInterruptType . 194
epicsInterruptUnlock. 240
epicsList.h . 220
epicsMax. 222
epicsMin . 222
epicsMutex . 241
epicsMutex.h. 241
epicsMutexCreate . 243
epicsMutexDestroy . 243
epicsMutexId. 243
epicsMutexLock . 243
epicsMutexLockError 241
epicsMutexLockOK . 241
epicsMutexLockStatus 241
epicsMutexLockTimeout 241
epicsMutexLockWithTimeout 243
epicsMutexMustCreate 243
epicsMutexMustLock 243
epicsMutexShow. 243
epicsMutexTryLock . 243
epicsMutexUnlock . 243
epicsParamShow . 119
epicsPrintf . 127, 144
epicsRelease . 120
epicsRingBytes.h . 225
epicsRingBytesCreate 225
epicsRingBytesDelete 225
epicsRingBytesFlush 225
epicsRingBytesFreeBytes 225
epicsRingBytesGet . 225
epicsRingBytesId . 225
epicsRingBytesIsEmpty 225
epicsRingBytesIsFull 225
epicsRingBytesPut . 225

epicsRingBytesSize. 225
epicsRingBytesUsedBytes 225
epicsRingPointer . 225
epicsRingPointer.h . 225
epicsString.h . 235
epicsSwap . 222
epicsThread . 244, 247
epicsThread.h . 244
epicsThreadBooleanStatus 244
epicsThreadBooleanStatusFail 244
epicsThreadBooleanStatusSuccess 244
epicsThreadCreate. 245–246
epicsThreadExitMain 244, 246
EPICSTHREADFUNC. 244
epicsThreadGetId 245–246
epicsThreadGetIdSelf 245–246
epicsThreadGetName 245–246
epicsThreadGetNameSelf 245–246
epicsThreadGetPriority 245–246
epicsThreadGetPrioritySelf. 245–246
epicsThreadGetStackSize 244–245
epicsThreadHighestPriorityLevelBelow. 245–246
epicsThreadId . 245
epicsThreadInit . 244
epicsThreadIsEqual. 245–246
epicsThreadIsSuspended. 245–246
epicsThreadLowestPriorityLevelAbove . 245–246
epicsThreadOnce. 244–245
epicsThreadOnceId . 244
epicsThreadPriorityChannelAccessServer . . . 244
epicsThreadPriorityHigh. 244
epicsThreadPriorityLow 244
epicsThreadPriorityMax 244
epicsThreadPriorityMedium 244
epicsThreadPriorityMin 244
epicsThreadPriorityScanHigh 244
epicsThreadPriorityScanLow 244
epicsThreadPrivateCreate 245, 247
epicsThreadPrivateDelete 245, 247
epicsThreadPrivateGet 245, 247
epicsThreadPrivateId 245
epicsThreadPrivateSet. 245, 247
epicsThreadResume 245–246
epicsThreadRunable . 247
epicsThreadSetPriority 245–246
epicsThreadShow 245–246
epicsThreadShowAll. 245–246
epicsThreadSleep 245–246
epicsThreadStackBig 244
epicsThreadStackMedium. 244
epicsThreadStackSizeClass. 244
epicsThreadStackSmall. 244
epicsThreadSuspendSelf 245–246
epicsTime . 249
epicsTime.h . 249
epicsTimer. 227–228
epicsTimer.h . 227
epicsTimerId . 230
epicsTimerNotify . 228
epicsTimerQueueActive 229
epicsTimerQueueId. 230
epicsTimerQueueNotify 229
epicsTimerQueuePassive 229
EPICStovxWorksAddrType 193
269 EPICS IOC Application Developer’s Guide

epicsTypes.h . 235
epicsVprintf. 127
errlog Task . 127
errlogAddListener . 127
errlogFatal . 126
errlogFlush . 125
errlogGetSevEnumString 126
errlogGetSevToLog. 126
errlogInfo . 126
errlogInit . 88, 128
errlogListener . 127
errlogMajor . 126
errlogMessage . 125
errlogMinor . 126
errlogPrintf . 125
errlogRemoveListener. 127
errlogSetSevToLog . 126
errlogSevEnum . 126
errlogSevPrintf . 126
errlogSevVprintf . 126
errlogVprintf . 125
errMessage . 126
errPrintf . 126–127
Escape Sequence. 65
Event . 203
Event - Scan Type . 203
Event Scanning . 208
EVNT - Scan Related Field 204
exit. 214
expire. 228
extra - field definition rules 68
extra_info - field definition 70

F

field . 64
field_name - field definition 68
field_name - record instance definition. 74
field_size in DBADDR 175
field_type in DBADDR. 175
filed_type - field definition 68
filename extension conventions 66
FLDNAME_SZ. 173
freeList.h . 232
freeListCalloc . 232
freeListCleanup. 232
freeListFree . 232
freeListInitPvt . 232
freeListItemsAvail. 232
freeListMalloc. 232
function templates. 219
FWDLINK . 53

G

get_alarm_double Record Support Routine . . 143
get_array_info - Record Support Routine. . . . 141
get_control_double - Record Support Routine 143
get_enum_str - record Support Routine 142
get_enum_strs - record Support Routine 142

get_graphic_double - example 137
get_graphic_double - Record Support Routine143
get_ioint_info . 207
get_ioint_info - device support routine. 152
get_precision - Record Support Routine. 142
get_units - .example . 137
get_units - Record Support Routine 142
getExpireDelay . 228
getExpireInfo . 228
gft . 122
GNU make . 26
gnumake . 30
gphAdd . 232
gpHash.h . 232
gphDelete . 232
gphDump. 233
GPHENTRY . 232
gphFind . 232
gphFreeMem. 233
gphInitPvt . 232
GPIB_IO . 75
grecord . 64
gui_group - field definition 68
Guidelines for Asynchronous Records 59
Guidelines for Synchronous Records 58

H

HAG . 92–94
help . 214
HOST_OPT. 46
HOST_WARN . 46
Html . 39
HTMLS. 39, 48
HTMLS_DIR . 48

I

I/O Event - Scan Type. 203
I/O Event scanned . 203
I/O Event Scanning 206, 209
INC . 38, 47
include. 64
include - Database Definitions 66
Include File Generation. 78
Include files. 38
init - device support routine 151
init - Record Support Routine 140
init_record - device support routine 151
init_record - example 135
init_record - Record Support Routine. 140
init_value - field definition 68
InitDatabase . 87
InitDevSup . 87
InitDrvSup. 87
initHookFunction . 89
initHookRegister . 89
initHooks. 89
initHookState . 89
initial - field definition rules 67
270 EPICS IOC Application Developer’s Guide

Initialize Logging . 90
initPeriodic . 210
InitRecSup. 87
INLINK. 53
INP . 93
Input/Output Controller 7

Hardware/Software Platforms. 18
Software Components. 19

INPUTRC . 215
INST_IO . 75
INSTALL_LOCATION 25, 50
installEpics.pl . 51
interest - field definition rules 68
interest_level - field definition 70
interruptAccept . 87
IOC . 17

See Input/Out Controller
IOC Error Logging . 125
IOC Shell . 213
iocInit . 86
iocLogClient . 129
iocLogDisable . 129
iocLogServer. 129
IOCSH_HISTSIZE . 215
IOCSH_PS1 . 215
ISO C++ . 219

J

JAR . 49
JAR_INPUT . 49
Java classes . 49

K

Keywords . 64

L

LAN . 17
LDFLAGS. 47
Lex and yac . 39
LEXOPT . 49
LIBOBJS. 36
Libraries . 34
LIBRARY . 35, 38, 44
Library example

. 37
library name . 35
Library object file 27–28, 36
Library Source file 35–36
LIBRARY_HOST. 35, 38, 40, 42–44
LIBRARY_IOC 35, 38, 40, 42–44
LIBS . 41, 47
LIBSRCS . 35, 45
link.h . 173
LINK_ALARM. 54
link_type - device definition 72

linked list. 220
Local Area Network

Hardware/Software Platforms. 18
logMsg . 129

M

macCreateHandle . 233
macDeleteHandle . 234
macExpandString . 233
macGetValue . 234
macInstallMacros . 234
macParseDefns . 234
macPopScope . 234
macPushScope . 234
macPutValue . 233
macReportMacros . 234
Macro Substitution . 65
macSuppressWarning 233
Make . 30
Make commands . 30
Make targets . 31
makeConfigAppInclude.pl 51
makeDbDepends.pl . 52
Makefiles. 29
makeIocCdCommands.pl 52
makeMakefile.pl . 52
makeMakefileInclude.pl 52
mallocMustSucceed . 235
MANIFEST. 49
MAX_STRING_SIZE 173
Maximize Severity . 54
menu . 64
menu - field definition rules 68
MENUS. 32
Menus . 32
menuScan.dbd. 204
monitor - example . 139
MS. 54
Multiple Definitions . 65
munch.pl . 52
mv.pl . 52

N

name - breakpoint table. 73
NMS . 54
no_elements in DBADDR 175
NOTRAPWRITE . 93
NPP . 54
nstall Directories . 25

O

OBJS . 37, 40, 48
OBJS_HOST. 48
OBJS_IOC . 48
Operator Interface
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 271

Hardware/Software Platforms. 18
OPI . 17
OSI_PATH_LIST_SEPARATOR 236
OSI_PATH_SEPARATOR 236
osiFindGlobalSymbol 240
osiMutex.h . 256
osiPoolStatus.h . 256
osiProcess.h. 257
osiSem.h . 257
osiSigPipeIgnore.h . 257
osiSock.h. 234, 257
osiSufficentSpaceInPool 256
OUTLINK. 53
Overview of Record Processing 132

P

PACKAGE . 49
Passive. 203
Passive - Scan Type. 203
path . 64
path - Database Definitions. 66
Periodic - Scan Type . 203
Periodic Scanning . 210
periodicTask . 210
Perl . 26
pfield in DBADDR . 175
pfldDes in DBADDR 175
pft . 122
PHAS - Scan Related Field. 204
post_event . 206, 209
postfix . 219
postfix.h. 219
PP . 54
pp - field definition rules 68
pp_value - field definition 70
precord - DBADDR . 175
PRIO - Scan Related Field 204
process - example . 136
process - Record Support Routine 140
process - record support routine 56
Process Passive . 54
PROD . 43
PROD_LIBS . 41, 47
PROD_SRCS . 45
product libraries . 41
product name. 40
product object file . 40
product source file. 40
Products. 39
prompt - field definition rules 68
prompt_value - field definition 68
. 67
Psuedo Field . 77
put_array_info - Record Support Routine. . . . 141
put_enum_str - Record Support Routine 142
PUTNOTIFY . 182
PV_LINK . 74
PVNAME_SZ . 173

Q

Quoted String . 65

R

RANLIBFLAGS . 49
RCS. 49–50
rebuild . 30
recGblDbaddrError . 144
recGblFwdLink . 146
recGblGetAlarmDouble 145
recGblGetControlDouble 145
recGblGetGraphicDouble 145
recGblGetPrec. 145
recGblGetTimeStamp 145
recGblInitConstantLink 146
recGblRecordError . 144
recGblRecsupError . 145
recGblResetAlarms . 144
recGblSetSevr . 144
record . 64
record attribute . 77
record instance - database definition. 74
Record Instance File . 63
Record Processing. 56
Record Support Entry Table 133
record type - Database Definition 67
Record Type Definitions 32
record_name - record instance definition 74
record_type - device definition 72
record_type - record instance definition 74
record_type - record type definition 68
recordtype . 64
RECTYPES . 32
registerRecordDeviceDriver 260
registerRecordDeviceDriver.c 260
registerRecordDeviceDriver.pl 260
Registry.h . 259
registryAdd . 259
registryDeviceSupport.h 260
registryDeviceSupportAdd 260
registryDeviceSupportFind 260
registryDriverSupport.h 260
registryDriverSupportAdd. 260
registryDriverSupportFind 260
registryDump . 259
registryFind . 259
registryFree . 259
registryFunction.h . 260
registryFunctionAdd . 260
registryFunctionFind. 260
registryRecordTypeAdd 259
registrySetTableSize . 259
RELEASE. 51
release . 229
replaceVAR.pl . 52
report - device support routine 151
report - Record Support Routine. 140
resourceLib.h. 223
RF_IO . 75
272 EPICS IOC Application Developer’s Guide

ringPointer. 226
ringPointerCreate . 227
ringPointerDelete . 227
ringPointerFlush . 227
ringPointerGetFree . 227
ringPointerGetSize . 227
ringPointerGetUsed. 227
ringPointerId . 227
ringPointerIsEmpty . 227
ringPointerIsFull . 227
ringPointerPop . 227
ringPointerPush. 227
rm.pl . 52
RSET. 133
RSET - example . 134
RULE . 93
RULES . 51
rules

field definition . 67
RULES.Db . 51
RULES_ARCHS. 51
RULES_BUILD . 51
RULES_DIRS. 51
RULES_JAVA . 51
RULES_TOP. 51

S

S_db_Blocked . 182
S_db_Pending . 182
sCalcPostfix.h . 219
SCAN - Scan Related Field 203
Scan Once - Scan Type 203
Scan Related Database Fields 203
SCAN_1ST_PERIODIC. 205
scanAdd. 205
scanDelete . 205
scanInit . 205
scanIoInit. 209
scanIoRequest . 209
scanOnce . 210
scanOnceSetQueueSize. 88, 211
scanpel. 116
scanpiol . 116
scanppl . 116
SCH2EDIF_FLAGS . 49
SCRIPTS. 48
Scripts . 38
SHARED_LIBRARIES 44
show . 214
SHRLIB_VERSION. 44
size - field definition rules. 68
size_value - field definition 70
SNCFLAGS . 49
SPC_ALARMACK. 69
SPC_AS . 69
SPC_CALC. 70
SPC_DBADDR. 69
SPC_LINCONV . 69
SPC_MOD . 69
SPC_NOMOD . 69
SPC_RESET . 69

SPC_SCAN. 69
special - field definition rules 68
special - Record Support Routine 141
special in DBADDR . 175
special_value - field definition 69
Specifying libraries . 41
SRCS. 35–36, 44–45
standard C++ library 219–220
start . 228
State Notation Programs 38
STATIC_BUILD . 47
status codes . 128
std

list . 220
max . 222
min . 222
swap . 222

STRICT. 46
struct dbAddr . 175
struct putNotify . 182
synchronous device support example 147
SYS_LIBS . 42, 47
SYS_PROD_LIBS 41, 47

T

tar . 31
Target files. 42
TARGETS. 42, 50
taskwd.h . 200
taskwdAnyInsert . 200
taskwdAnyRemove . 201
taskwdInsert . 200
taskwdRemove . 200
TCL libraries. 43
TCLINDEX. 43, 48
TCLLIBNAME. 43, 48
TEMPLATES . 39, 49
Templates . 39
templates . 219
TEMPLATES_DIR. 49
TERM . 215
Test Products . 42
TESTCLASSES . 49
TESTPROD . 42–43
timexN. 120
top . 25
Tornado II . 26
tpn . 122
TRAD . 46
TRAPWRITE . 93, 106
truncateFile . 236
tsBTree.h . 223
TSConfigure . 88
TSconfigure. 88
tsDLList.h . 223
tsFreeList.h . 223
tsMinMax.h. 223
TSreport . 116
tsSLList.h . 223
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 273

U

UAG . 92–94
UDF. 139
udf . 138
uninstall. 30
Unquoted String . 65
USER_DBDFLAGS . 33
USER_VPATH . 50
USES_TEMPLATE . 34
USR_CFLAGS . 45
USR_CPPFLAGS . 46
USR_CXXFLAGS . 45
USR_INCLUDE . 46
USR_LDFLAGS. 47
USR_LIBS . 41, 47

V

value - record instance definition 74
veclist . 119
VME_AM_EXT_SUP_DATA 193
VME_AM_STD_SUP_DATA 193
VME_AM_SUP_SHORT_IO. 193
VME_IO . 75
VXI_IO . 76
vxWorks . 26
vxWorks startup command file 85

Y

YACCOPT . 49
274 EPICS IOC Application Developer’s Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Table of Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Acknowledgments

	Chapter 2: New Features for 3.14
	2.1 Introduction
	2.2 Example Application
	2.2.1 Check that EPICS_HOST_ARCH is defined
	2.2.2 Create the example application
	2.2.3 Inspect files
	2.2.4 Sequencer Example
	2.2.5 Build
	2.2.6 Inspect files
	2.2.7 Run the ioc example
	2.2.8 Channel Access Host Examples
	2.2.9 vxWorks boot parameters

	2.3 Shell for non vxWorks environment
	2.4 Some Unresolved Items

	Chapter 3: EPICS Overview
	3.1 What is EPICS?
	3.2 Basic Attributes
	3.3 Hardware - Software Platforms (Vendor Supplied)
	3.3.1 OPI
	3.3.2 LAN
	3.3.3 IOC

	3.4 IOC Software Components
	3.4.1 IOC Database
	3.4.2 Database Access
	3.4.3 Database Scanning
	3.4.4 Record Support, Device Support and Device Drivers
	3.4.5 Channel Access
	3.4.6 Database Monitors

	3.5 Channel Access
	3.5.1 Client Services
	3.5.2 Search Server
	3.5.3 Connection Request Server
	3.5.4 Connection Management

	3.6 OPI Tools
	3.6.1 Examples of channel Access Tools
	3.6.2 Examples of other OPI Tools

	3.7 EPICS Core Software

	Chapter 4: EPICS Build Facility
	4.1 Overview
	4.1.1 <top> Directory structure
	4.1.2 Install Directories
	4.1.3 Elements of build system
	4.1.4 Features
	4.1.5 Environment Prerequisites
	4.1.6 System Prerequisites
	4.1.7 Directory definitions
	4.1.8 RELEASE file
	4.1.9 Specifying osclass
	4.1.10 Host and Ioc targets

	4.2 Makefiles
	4.2.1 Name
	4.2.2 Included Files
	4.2.3 Contents of Makefiles
	4.2.4 Simple Makefile examples

	4.3 Make
	4.3.1 Make vs. gnumake
	4.3.2 Frequently used Make commands
	4.3.3 Make targets
	4.3.4 Header file dependencies

	4.4 Makefile definitions
	4.4.1 Source file directories
	4.4.2 Breakpoint Tables
	4.4.3 Record Type Definitions
	4.4.4 Menus
	4.4.5 Expanded Database Definition File
	4.4.6 Registering Support Routines for Expanded Database Definition Files
	4.4.7 Database Definition Files
	4.4.8 Database Files
	4.4.9 Libraries
	4.4.9.1 Specifying the library name.
	4.4.9.2 Specifying library source file names
	4.4.9.3 Specifying library object file names
	4.4.9.4 LIBOBJS definitions
	4.4.9.5 Specifying library DLL file names
	4.4.9.6 Library example:

	4.4.10 Generate and install object Files
	4.4.11 State Notation Programs
	4.4.12 Scripts, etc.
	4.4.13 Include files
	4.4.14 Html and Doc files
	4.4.15 Templates
	4.4.16 Lex and yac
	4.4.17 Products
	4.4.17.1 Specifying the product name.
	4.4.17.2 Specifying product object file names
	4.4.17.3 Specifying product source file names
	4.4.17.4 Specifying libraries to be linked when creating the product

	4.4.18 Test Products
	4.4.19 Target files
	4.4.20 Bin install files
	4.4.21 TCL libraries

	4.5 Table of Makefile definitions
	4.6 Configuration Files
	4.6.1 Base Configure Directory
	4.6.2 Base Configure File Descriptions
	4.6.3 Base configure/os File Descriptions
	4.6.4 Base configure/tool File Descriptions

	Chapter 5: Database Locking, Scanning, And Processing
	5.1 Overview
	5.2 Record Links
	5.3 Database Links
	5.3.1 Process Passive
	5.3.2 Maximize Severity

	5.4 Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	5.5 Database Scanning
	1. Periodic - Records are scanned at regular intervals.
	2. I/O event - A record is scanned as the result of an I/O interrupt.
	3. Event - A record is scanned as the result of any task issuing a post_event request.
	4. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	5.6 Record Processing
	5.7 Guidelines for Creating Database Links
	1. A begins processing. While processing a request is made to process B.
	2. B starts processing. While processing a request is made to process C.
	3. C starts processing. One of the first steps is to get a value from A via the input link.
	4. At this point a question occurs. Note that the input link specifies process passive (signified...
	5. C obtains the value from A and completes its processing. Control returns to B.
	6. B completes returning control to A
	7. A completes processing.
	5.7.1 Rules Relating to Database Links
	5.7.1.1 Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	5.7.1.2 Lock Sets
	5.7.1.3 PACT - processing active
	5.7.1.4 Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	5.7.1.5 Process Passive: Field attribute
	5.7.1.6 Maximize Severity: Link option

	5.8 Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	5.9 Guidelines for Asynchronous Records
	1. pact is set TRUE
	2. Data is obtained for all input links
	3. Record processing is started
	4. The record processing routine returns
	5. Record processing continues
	6. Record specific alarm conditions are checked
	7. Monitors are raised
	8. Forward links are processed
	9. pact is set FALSE.
	10. Asynchronous record processing does not delay the scanners.
	11. Between the time record processing begins and the asynchronous completion routine completes, ...
	12. Forward and output links are triggered only when the asynchronous completion routine complete...
	5.9.1 Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	5.9.2 Obtain Old Data
	5.9.3 Delays
	5.9.4 Task Abort

	5.10 Cached Puts
	5.11 Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.
	5.11.1 INLINK
	5.11.2 OUTLINK
	5.11.3 FWDLINK

	Chapter 6: Database Definition
	6.1 Overview
	6.2 Brief Summary of Database Definition Syntax
	6.3 General Rules for Database Definition
	6.3.1 Keywords
	6.3.2 Unquoted Strings
	6.3.3 Quoted Strings
	6.3.4 Macro Substitution
	6.3.5 Escape Sequences
	6.3.6 Define before referencing
	6.3.7 Multiple Definitions
	6.3.8 filename extension
	6.3.9 path addpath
	6.3.10 include
	6.3.11 comment

	6.4 Menu
	6.5 Record Type
	6.5.1 Format:
	6.5.2 rules
	6.5.3 definitions
	6.5.4 Example

	6.6 Device
	6.6.1 Format:
	6.6.2 definitions
	6.6.3 Examples

	6.7 Driver
	6.7.1 Format:
	6.7.2 Definitions
	6.7.3 Examples

	6.8 Breakpoint Table
	6.8.1 Format:
	6.8.2 Definitions
	6.8.3 Example

	6.9 Record Instance
	6.9.1 Format:
	6.9.2 definitions
	6.9.3 Examples

	6.10 Record Attribute
	6.11 Breakpoint Tables - Discussion
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	6.12 Menu and Record Type Include File Generation.
	6.12.1 Introduction
	6.12.2 dbToMenuH
	6.12.3 dbToRecordtypeH

	6.13 dbExpand
	6.14 dbLoadDatabase
	6.14.1 EXAMPLE

	6.15 dbLoadRecords
	6.16 dbLoadTemplate
	6.16.1 EXAMPLE

	6.17 dbReadTest

	Chapter 7: IOC Initialization
	7.1 Overview - Environments requiring a main program
	7.2 Overview - vxWorks
	7.3 Overview - RTEMS
	7.4 iocInit
	7.4.1 coreRelease
	7.4.2 taskwdInit
	7.4.3 callbackInit
	7.4.4 dbCaLinkInit
	7.4.5 initDrvSup
	7.4.6 initRecSup
	7.4.7 initDevSup
	7.4.8 initDatabase
	7.4.9 finishDevSup
	7.4.10 scanInit
	7.4.11 interruptAccept
	7.4.12 initialProcess
	7.4.13 rsrv_init

	7.5 Changing iocCore fixed limits
	7.5.1 callbackSetQueueSize
	7.5.2 dbPvdTableSize
	7.5.3 scanOnceSetQueueSize
	7.5.4 errlogInit

	7.6 TSconfigure
	7.7 initHooks
	7.8 Environment Variables
	7.9 Initialize Logging

	Chapter 8: Access Security
	8.1 Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	8.2 Quick Start
	8.3 User’s Guide
	8.3.1 Features
	8.3.2 Limitations
	8.3.3 Definitions
	8.3.4 Access Security Configuration File
	8.3.4.1 Simple Example
	8.3.4.2 Syntax Definition
	8.3.4.3 Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	8.3.5 ascheck - Check Syntax of Access Configuration File
	8.3.6 IOC Access Security Initialization
	8.3.7 Database Configuration
	8.3.7.1 Access Security Group
	8.3.7.2 Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	3. When the value is found to be 1, asInit is called and the value set back to 0.
	4. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	8.3.7.3 Record Type Description

	8.3.8 Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.

	8.4 Design Summary
	8.4.1 Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	8.4.2 Additional Requirements
	8.4.2.1 Performance
	8.4.2.2 Generic Implementation
	8.4.2.3 No Access Security within an IOC
	8.4.2.4 Defaults
	8.4.2.5 Access Security is Optional

	8.4.3 Design Overview
	8.4.3.1 Configuration File
	8.4.3.2 Access Security Library
	8.4.3.3 IOC Database Access Security
	8.4.3.4 Channel Access Security

	8.4.4 Comments
	8.4.5 Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

	8.5 Access Security Application Programmer’s Interface
	8.5.1 Definitions
	8.5.2 Initialization
	8.5.3 Group manipulation
	8.5.3.1 add Member
	8.5.3.2 remove Member
	8.5.3.3 get Member Pvt
	8.5.3.4 put Member Pvt
	8.5.3.5 change Group

	8.5.4 Client Manipulation
	8.5.4.1 add Client
	8.5.4.2 change Client
	8.5.4.3 remove Client
	8.5.4.4 get Client Pvt
	8.5.4.5 put Client Pvt
	8.5.4.6 register Callback
	8.5.4.7 check Get
	8.5.4.8 check Put

	8.5.5 Access Computation
	8.5.5.1 compute all Asg
	8.5.5.2 compute Asg
	8.5.5.3 compute access rights

	8.5.6 Diagnostic
	8.5.6.1 dump
	8.5.6.2 dump UAG
	8.5.6.3 dump HAG
	8.5.6.4 dump Rules
	8.5.6.5 dump member
	8.5.6.6 dump hash table

	8.6 Database Access Security
	8.6.1 Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	8.6.2 Access Security Group definition
	8.6.3 Access Client Definition
	8.6.4 Database Access Library
	8.6.4.1 Initialization
	8.6.4.2 Routines used by Channel Access Server
	8.6.4.3 Routine to test asAddClient
	8.6.4.4 Subroutines attached to a subroutine record
	8.6.4.5 Diagnostic Routines

	8.7 Channel Access Security
	8.7.1 CA Server Interfaces to the Access Security System
	8.7.2 Client Interfaces

	8.8 Trapping Channel Access Writes
	1. The facility, e.g. the channel access server, using access security must make two calls: asTra...
	2. asTrapWrite gets called by asTrapWriteBefore and asTrapWriteAfter. asTrapWrite uses the TRAPWR...
	3. Some facility not included with access security must call asTrapWriteRegisterListener. If noth...

	8.9 Access Control: Implementation Overview
	8.9.1 Implementation Overview
	8.9.2 Locking

	8.10 Structures

	Chapter 9: IOC Test Facilities
	9.1 Overview
	9.2 Database List, Get, Put
	9.2.1 dbl
	9.2.2 dbgrep
	9.2.3 dba
	9.2.4 dbgf
	9.2.5 dbpf
	9.2.6 dbpr
	9.2.7 dbtr
	9.2.8 dbnr

	9.3 Breakpoints
	9.3.1 dbb
	9.3.2 dbd
	9.3.3 dbs
	9.3.4 dbc
	9.3.5 dbp
	9.3.6 dbap
	9.3.7 dbstat

	9.4 Error Logging
	9.4.1 eltc

	9.5 Hardware Reports
	9.5.1 dbior
	9.5.2 dbhcr

	9.6 Scan Reports
	9.6.1 scanppl
	9.6.2 scanpel
	9.6.3 scanpiol

	9.7 Time Server Report
	9.7.1 TSreport

	9.8 Access Security Commands
	9.8.1 asSetSubstitutions
	9.8.2 asSetFilename
	9.8.3 asInit
	9.8.4 asdbdump
	9.8.5 aspuag
	9.8.6 asphag
	9.8.7 asprules
	9.8.8 aspmem

	9.9 Channel Access Reports
	9.9.1 ca_channel_status
	9.9.2 casr
	9.9.3 dbel
	9.9.4 dbcar

	9.10 Interrupt Vectors
	9.10.1 veclist

	9.11 EPICS
	9.11.1 epicsParamShow
	9.11.2 epicsEnvShow
	9.11.3 epicsRelease

	9.12 Database System Test Routines
	9.12.1 dbt
	9.12.2 dbtgf
	9.12.3 dbtpf
	9.12.4 dbtpn

	9.13 Record Link Reports
	9.13.1 dblsr
	9.13.2 dbcar
	9.13.3 dbhcr

	9.14 Old Database Access Testing
	9.14.1 gft
	9.14.2 pft
	9.14.3 tpn

	9.15 Routines to dump database information
	9.15.1 dbDumpPath
	9.15.2 dbDumpMenu
	9.15.3 dbDumpRecordType
	9.15.4 dbDumpFldDes
	9.15.5 dbDumpDevice
	9.15.6 dbDumpDriver
	9.15.7 dbDumpRecord
	9.15.8 dbDumpBreaktable
	9.15.9 dbPvdDump

	Chapter 10: IOC Error Logging
	10.1 Overview
	10.2 Error Message Routines
	10.2.1 Basic Routines
	10.2.2 Log with Severity
	10.2.3 Status Routines
	10.2.4 Obsolete Routines

	10.3 errlog Task
	10.3.1 Add and Remove Log Listener
	10.3.2 target console routines

	10.4 Status Codes
	10.5 iocLog
	10.5.1 iocLogServer
	10.5.2 iocLogClient
	10.5.3 Initialize Logging
	10.5.4 Configuring a Private Log Server

	Chapter 11: Record Support
	11.1 Overview
	11.2 Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	11.3 Record Support and Device Support Entry Tables
	11.4 Example Record Support Module
	11.4.1 Declarations
	11.4.2 init_record
	11.4.3 process
	11.4.4 Miscellaneous Utility Routines
	11.4.5 Alarm Processing
	11.4.6 Raising Monitors

	11.5 Record Support Routines
	11.5.1 Generate Report of Each Field in Record
	11.5.2 Initialize Record Processing
	11.5.3 Initialize Specific Record
	11.5.4 Process Record
	11.5.5 Special Processing
	11.5.6 Get Value
	11.5.7 Convert dbAddr Definitions
	11.5.8 Get Array Information
	11.5.9 Put Array Information
	11.5.10 Get Units
	11.5.11 Get Precision
	11.5.12 Get Enumerated String
	11.5.13 Get Strings for Enumerated Field
	11.5.14 Put Enumerated String
	11.5.15 Get Graphic Double Information
	11.5.16 Get Control Double Information
	11.5.17 Get Alarm Double Information

	11.6 Global Record Support Routines
	11.6.1 Alarm Status and Severity
	11.6.2 Alarm Acknowledgment
	11.6.3 Generate Error: Process Variable Name, Caller, Message
	11.6.4 Generate Error: Status String, Record Name, Caller
	11.6.5 Generate Error: Record Name, Caller, Record Support Message
	11.6.6 Get Graphics Double
	11.6.7 Get Control Double
	11.6.8 Get Alarm Double
	11.6.9 Get Precision
	11.6.10 Get Time Stamp
	11.6.11 Forward link
	11.6.12 Initialize Constant Link

	Chapter 12: Device Support
	12.1 Overview
	12.2 Example Synchronous Device Support Module
	12.3 Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	12.4 Device Support Routines
	12.4.1 Generate Device Report
	12.4.2 Initialize Record Processing
	12.4.3 Initialize Specific Record
	12.4.4 Get I/O Interrupt Information
	12.4.5 Other Device Support Routines

	Chapter 13: Driver Support
	13.1 Overview
	13.2 Device Drivers
	13.2.0.1 init
	13.2.0.2 report
	13.2.0.3 Hardware Configuration

	Chapter 14: Static Database Access
	14.1 Overview
	14.2 Definitions
	14.2.1 DBBASE
	14.2.2 DBENTRY
	14.2.3 Field Types

	14.3 Allocating and Freeing DBBASE
	14.3.1 dbAllocBase
	14.3.2 dbFreeBase

	14.4 DBENTRY Routines
	14.4.1 Alloc/Free DBENTRY
	14.4.2 dbInitEntry dbFinishEntry
	14.4.3 dbCopyEntry dbCopyEntry Contents

	14.5 Read and Write Database
	14.5.1 Read Database File
	14.5.2 Write Database Definitons
	14.5.3 Write Record Instances

	14.6 Manipulating Record Types
	14.6.1 Get Number of Record Types
	14.6.2 Locate Record Type
	14.6.3 Get Record Type Name

	14.7 Manipulating Field Descriptions
	14.7.1 Get Number of Fields
	14.7.2 Locate Field
	14.7.3 Get Field Type
	14.7.4 Get Field Name
	14.7.5 Get Default Value
	14.7.6 Get Field Prompt

	14.8 Manipulating Record Attributes
	14.8.1 dbPutRecord Attribute
	14.8.2 dbGetRecord Attribute

	14.9 Manipulating Record Instances
	14.9.1 Get Number of Records
	14.9.2 Locate Record
	14.9.3 Get Record Name
	14.9.4 Create/Delete/Free Record
	14.9.5 Copy Record
	14.9.6 Rename Record
	14.9.7 Record Visibility
	14.9.8 Find Field
	14.9.9 Get/Put Field Values

	14.10 Manipulating Menu Fields
	14.10.1 Get Number of Menu Choices
	14.10.2 Get Menu Choice
	14.10.3 Get/Put Menu
	14.10.4 Locate Menu

	14.11 Manipulating Link Fields
	14.11.1 Link Types
	14.11.2 All Link Fields
	14.11.3 Constant and Process Variable Links

	14.12 Manipulating MenuForm Fields
	14.12.1 Alloc/Free Form
	14.12.2 Get/Put Form
	14.12.3 Verify Form
	14.12.4 Get Related Field
	14.12.5 Example

	14.13 Find Breakpoint Table
	14.14 Dump Routines
	14.15 Examples
	14.15.1 Expand Include
	14.15.2 dbDumpRecords

	Chapter 15: Runtime Database Access
	15.1 Overview
	15.2 Database Include Files
	15.2.1 dbDefs.h
	15.2.2 dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	15.2.3 dbAccess.h
	15.2.4 link.h

	15.3 Runtime Database Access Overview
	15.3.1 Database Request Types and Options
	15.3.2 Options Example
	15.3.3 ACKT and ACKS

	15.4 Database Access Routines
	15.4.1 dbNameToAddr
	15.4.2 Get Routines
	15.4.2.1 dbGetField
	15.4.2.2 dbGetLink and dbGetLinkValue
	15.4.2.3 dbGet

	15.4.3 Put Routines
	15.4.3.1 dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.
	5. The record is unlocked.

	15.4.3.2 dbPutLink and dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	15.4.3.3 dbPut

	15.4.4 Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...
	15.4.4.1 dbPutNotify
	15.4.4.2 dbNotifyCancel
	15.4.4.3 dbNotifyAdd
	15.4.4.4 dbNotifyCompletion

	15.4.5 Utility Routines
	15.4.5.1 dbBufferSize
	15.4.5.2 dbValueSize
	15.4.5.3 dbGetRset
	15.4.5.4 dbIsValueField
	15.4.5.5 dbGetFieldIndex
	15.4.5.6 dbGetNelements
	15.4.5.7 dbIsLinkConnected
	15.4.5.8 dbGetPdbAddrFromLink
	15.4.5.9 dbGetLinkDBFtype
	15.4.5.10 dbGetControlLimits
	15.4.5.11 dbGetGraphicLimits
	15.4.5.12 dbGetAlarmLimits
	15.4.5.13 dbGetPrecision
	15.4.5.14 dbGetUnits
	15.4.5.15 dbGetSevr
	15.4.5.16 dbGetTimeStamp

	15.4.6 Attribute Routine
	15.4.6.1 dbPutAttribute

	15.4.7 Process Routines
	15.4.7.1 dbScanPassive dbScanLink dbScanFwdLink
	15.4.7.2 dbProcess

	15.5 Runtime Link Modification
	15.6 Channel Access Monitors
	15.7 Lock Set Routines
	15.7.0.1 dbScanLock
	15.7.0.2 dbScanUnlock
	15.7.0.3 dbLockGetLockId
	15.7.0.4 dbLockInitRecords
	15.7.0.5 dbLockSetMerge
	15.7.0.6 dbLockSetSplitSl
	15.7.0.7 dbLockSetGblLock
	15.7.0.8 dbLockSetGblUnlock
	15.7.0.9 dbLockSetRecordLock

	15.8 Channel Access Database Links
	15.8.1 Basic Routines
	15.8.1.1 dbCaLinkInit
	15.8.1.2 dbCaAddLink
	15.8.1.3 dbCaRemoveLink
	15.8.1.4 dbCaGetLink
	15.8.1.5 dbCaPutLink
	15.8.1.6 dbCaGetAttributes
	15.8.1.7 dbCaGetControlLimits
	15.8.1.8 dbCaGetGraphicLimits
	15.8.1.9 dbCaGetAlarmLimits
	15.8.1.10 dbCaGetPrecision
	15.8.1.11 dbCaGetUnits
	15.8.1.12 dbCaGetNelements
	15.8.1.13 dbCaGetSevr
	15.8.1.14 dbCaGetTimeStamp
	15.8.1.15 dbCaIsLinkConnected
	15.8.1.16 dbCaGetLinkDBFtype

	Chapter 16: Device Support Library
	16.1 Overview
	16.2 Registering VME Addresses
	16.2.1 Definitions of Address Types
	16.2.2 Register Address
	16.2.3 Unregister Address

	16.3 Interrupt Connect Routines
	16.3.1 Definitions of Interrupt Types
	16.3.2 Connect
	16.3.3 Disconnect
	16.3.4 Enable Level
	16.3.5 Disable Level

	16.4 Macros and Routines for Normalized Analog Values
	16.4.1 Normalized GetField
	16.4.2 Convert Digital Value to a Normalized Double Value
	16.4.3 Convert Normalized Double Value to a Digital Value

	Chapter 17: EPICS General Purpose Tasks
	17.1 Overview
	17.2 General Purpose Callback Tasks
	17.2.1 Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	17.2.2 Syntax
	17.2.3 Example
	17.2.4 Callback Queue

	17.3 Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 18: Database Scanning
	18.1 Overview
	18.2 Scan Related Database Fields
	18.2.1 SCAN
	18.2.2 PHAS
	18.2.3 EVNT - Event Number
	18.2.4 PRIO - Scheduling Priority

	18.3 Scan Related Software Components
	18.3.1 menuScan.dbd
	18.3.2 dbScan.h
	18.3.3 Initializing Database Scanners
	18.3.4 Adding And Deleting Records From Scan List
	18.3.5 Declaring Database Event
	18.3.6 Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	18.4 Implementation Overview
	18.4.1 Definitions And Routines Common To All Scan Types
	18.4.2 Event Scanning
	Figure 18-1: Scan List Memory Layout
	18.4.2.1 post_event

	18.4.3 I/O Event Scanning
	18.4.3.1 scanIoInit
	Figure 18-1: Interrupt Source Structure

	18.4.3.2 scanIoRequest

	18.4.4 Periodic Scanning
	Figure 18-1: Structure after iocInit
	18.4.4.1 initPeriodic
	18.4.4.2 periodicTask

	18.4.5 Scan Once
	18.4.5.1 scanOnce
	18.4.5.2 SetQueueSize

	Chapter 19: IOC Shell
	19.1 Introduction
	19.2 IOC Shell Operation
	19.2.1 Quoting
	19.2.2 Command-line editing and history
	19.2.3 Utility Commands
	19.2.4 ENVIRONMENT VARIABLES

	19.3 IOC Shell Programming
	19.3.1 Invoking the IOC shell
	19.3.2 Registering Commands
	19.3.3 Automatic Command Registration

	Chapter 20: libCom
	20.1 bucketLib
	20.2 calc
	20.3 cppStd
	20.3.1 epicsList
	20.3.2 epicsAlgorithm
	20.3.3 epicsExcept

	20.4 cvtFast
	20.5 cxxTemplates
	20.6 dbmf
	20.7 ellLib
	20.8 epicsRingBytes
	20.9 epicsRingPointer
	20.9.1 C++ Interface
	20.9.2 C interface

	20.10 epicsTimer
	20.10.1 C++ Interface
	20.10.1.1 epicsTimerNotify and epicsTimer
	20.10.1.2 epicsTimerQueue
	20.10.1.3 epicsTimerQueueActive
	20.10.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

	20.10.2 C Interface
	20.10.3 Example

	20.11 fdmgr
	20.12 freeList
	20.13 gpHash
	20.14 logClient
	20.15 macLib
	20.16 misc
	20.16.1 aToIPAddr
	1. n.n.n.n:p The Internet address of the host, specified as four numbers separated by periods.
	2. xxxxxxxx:p The Internet address number of the host, specified as a single number.
	3. hostname:p The Internet host name of the host.

	20.16.2 adjustment
	20.16.3 cantProceed
	20.16.4 dbDefs
	20.16.5 epicsString
	20.16.6 epicsTypes
	20.16.7 gsd_sync_defs.h
	20.16.8 locationException
	20.16.9 shareLib.h
	20.16.10 truncateFile.h
	20.16.11 unixFileName.h

	Chapter 21: libCom OSI libraries
	21.1 Overview
	21.1.1 OSI source directory
	21.1.2 Rules for building OSI.
	21.1.3 Locating OSI header files.

	21.2 epicsAssert
	21.3 epicsEvent
	21.3.1 C++ Interface
	21.3.2 C Interface

	21.4 epicsFindSymbol
	21.5 epicsInterrupt
	21.5.1 C Interface
	21.5.2 Implementation notes

	21.6 epicsMutex
	21.6.1 C++ Interface
	21.6.2 C Interface
	21.6.3 Implementation Notes

	21.7 epicsThread
	21.7.1 C Interface
	21.7.2 C++ Interface

	21.8 epicsTime
	21.8.1 Time Related Structures
	21.8.2 C++ Interface
	21.8.3 class epicsTimeEvent
	21.8.4 class epicsTime
	21.8.5 C Interface

	21.9 osiPoolStatus
	21.10 osiProcess
	21.11 osiSigPipeIgnore
	21.12 osiSock.h

	Chapter 22: Registry
	22.1 Registry.h
	22.2 registryRecordType.h
	22.3 registryDeviceSupport.h
	22.4 registryDriverSupport.h
	22.5 registryFunction.h
	22.6 registerRecordDeviceDriver.c
	22.7 registerRecordDeviceDriver.pl

	Chapter 23: Database Structures
	23.1 Overview
	23.2 Include Files
	23.3 Structures
	INDEX

